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A User-Assisted Approach to Visualizing
Multidimensional Images

Jason Lawrence, Sean Arietta, Michael Kazhdan, Daniel Lepage, Colleen O’Hagan

Abstract—We present a new technique for fusing together an arbitrary number of aligned images into a single color or intensity
image. We approach this fusion problem from the context of Multidimensional Scaling (MDS) and describe an algorithm that
preserves the relative distances between pairs of pixel values in the input (vectors of measurements) as perceived differences
in a color image. The two main advantages of our approach over existing techniques are that it can incorporate user constraints
into the mapping process and it allows adaptively compressing or exaggerating features in the input in order to make better use
of the output’s limited dynamic range. We demonstrate these benefits by showing applications in various scientific domains and
comparing our algorithm to previously proposed techniques.

Index Terms—multidimensional images, visualization techniques, dimensionality reduction, multidimensional scaling, physical
sciences and engineering, life and medical sciences
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1 INTRODUCTION

Multidimensional images are common in many fields
including remote sensing, medicine, biology, astron-
omy, computer vision, computer graphics, and digital
photography. They are the result of recording a se-
quence of scalar-valued images, each sensitive to the
physical world in different ways, in a common raster
grid. Commonly, these component images correspond
to different regions of the electromagnetic spectrum
(Figure 1, left).

General-purpose tools for visualizing multidimen-
sional images are critical for analyzing this important
type of dataset and a common approach is to compute
a single color or intensity image that attempts to cap-
ture their most salient features [2], [3], [4]. However,
this process represents an inherent loss of information
since the number of displayable bands (e.g., three
for a color image) is generally less than the number
of channels in the input. Moreover, it is often the
case that certain types of data (e.g., tissue density
measured by a CT scan) have no natural relationship
to the colors and intensities visible to the human
eye. As a result, there is no single correct solution to
this problem and different algorithms perform this
mapping in different ways. Nevertheless, researchers
have identified a number of properties that a useful
visualization ought to have [5], [6]. Chief among these
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is consistency: pixels in the visualization that have similar
values may be interpreted as having similar responses in
the underlying data and those with different values may be
interpreted as having different responses. Other desirable
properties include using a color palette that takes into
account the human visual system, preserving strong
edges that occur within any single input band, and
being efficient to compute.

Researchers have developed many different im-
age fusion techniques optimized for different objec-
tives [4]. A popular approach is to use some type
of dimensionality reduction (DR) algorithm such as
Principal Component Analysis (PCA) [7] to compute
a consistent visualization that preserves as much of
the variance in the input as is possible in a lower-
dimensional projection (Figure 1, middle). Other auto-
matic techniques involve merging features at different
spatial scales using, for example, a Laplacian pyra-
mid [8] or wavelet decomposition [9], or superimpos-
ing the spatial gradients of the individual component
images from which a single grayscale image may be
extracted by solving a Poisson equation [10].

Of these classes of techniques, dimensionality re-
duction offers a uniquely elegant way of taking ad-
vantage of a multidimensional output colorspace.
However, previously proposed algorithms suffer from
two key drawbacks that we attempt to address. First,
although these algorithms excel at capturing large-
scale features in the input they attenuate features
that occur at finer scales. For example, although the
differences between the terrain and water are clearly
captured by PCA in Figure 1, subtler variations within
these regions such as the turbulent swirls of sediment
in the water are far less perceptible. Second, current
algorithms do not allow a user to intuitively influence
the selection of colors during the mapping process.
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Fig. 1. A multispectral aerial image taken over the coast of New Zealand [1]. Left: Four of eight bands in the
input. In clockwise order starting from the upper left, the first three images correspond to the standard visible
region (R,G,B) and the fourth measures near infrared. Middle: Projection of the input onto its first three principal
components interpreted as coordinates in the CIELAB color space. Right: The result of our scaling algorithm
which maintains a more realistic color scheme and exaggerates fine-scale details such as the turbulence along
the coastline.

However, domain experts have well-established color
schemes and visualization practices and it would
be desirable to accommodate user constraints within
an otherwise automatic technique. We present an
algorithm that retains the benefits of dimensionality
reduction while allowing the user to participate in the
mapping process and provides a way of preserving
features in the input that occur over a wide range of
scales.

We approach this image fusion problem from the
context of Multidimesional Scaling (MDS) [11], a gen-
eral method for embedding a high-dimensional point
set in a lower-dimensional space so as to preserve
interpoint distances. We consider a general non-linear
formulation of MDS that can accommodate soft con-
straints on the solution. Based on a thorough analysis
of existing MDS techniques, we propose a practical
algorithm inspired by work done in the graph draw-
ing community [12], [13]. Specifically, we conduct the
underlying optimization within a low-dimensional
subspace of all possible solutions that is constructed to
contain a wide range of useful visualizations. We fur-
ther accelerate this optimization by considering only
a sparse set of pairwise distances in a way analogous
to existing “landmark” methods [14], [15]. Finally, we
present a modification to our basic algorithm that
allows exaggerating fine-scale details by modifying
the target pairwise distances. Although our technique
does not explicitly consider edge information in the
component images, our results show that it is effec-
tive at preserving these important features as well
(Figure 1, right). We evaluate our algorithm using
a variety of datasets from remote sensing, medicine,
biology and astronomy and compare its performance
to state-of-the-art methods.

2 RELATED WORK

The task of computing an informative color or inten-
sity visualization of a multidimensional image arises
in many settings ranging from analyzing hyperspec-
tral images in remote sensing to decolorization (or
“color to gray”) methods developed in computer
graphics. In contrast to the many domain-specific
techniques described in the literature, the solution we
present is general in that it can be tailored to apply to
datasets in different fields. We demonstrate this fact
by showing results in medicine, remote sensing, as-
tronomy, and biology. We have structured the follow-
ing discussion of prior work based on the underlying
numerical algorithm. To the best of our knowledge,
our approach is the first one that allows incorporating
user constraints into the mapping process and gives
explicit intuitive control over attenuating or exagger-
ating features in the input.
Segmentation: The pixel values in a multiparameter
image can be quantized into a displayable num-
ber of colors using unsupervised segmentation al-
gorithms [16], [17]. The main drawback of these
approaches is that they may fail to preserve intra-
cluster variation and the process of assigning colors
to clusters either is a difficult manual process or relies
on heuristics.
Dimensionality Reduction: A common strategy for
analyzing high-dimensional datasets is to project
them onto a lower-dimensional space where they can
be visualized directly. Techniques including PCA and
Projection Pursuit [18] compute a linear projection of
the data, each optimizing a different criterion, and
are commonly used to visualize multiparameter and
hyperspectral images [5], [7], [19], [20], [21], [22]. A
related set of methods perform a non-linear projection
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of the data. This includes Self-Organizing Maps [23]
that have been used in this context [24], [25] and the
work of Kim et al. [26] that applies Locally Linear
Embedding (LLE) [27] to project the input onto a
reduced basis. Although non-linear methods are nat-
urally more flexible than linear methods, both classes
of techniques struggle to accurately depict inputs that
contain a large range of values and they do not
provide intuitive control over the choice of colors. A
related set of methods are decolorization or “color to
gray” techniques developed in the computer graphics
community [28], [29], [30]. A method similar to our
technique is that of Rasche et al. [29] which applied
a similar MDS algorithm, although their formulation
did not allow arbitrary color constraints nor did they
explore non-linear transformations to the target dis-
tances for the purpose of exaggerating details in the
input.
Multiscale and Gradient-Domain Methods: An al-
ternative approach is to fuse together features in
the component images that occur at different spatial
scales [2]. The Laplacian pyramid [31] is well suited
for this task and has been used to visualize multipa-
rameter images [8]. However, this process is known
to cause blocking artifacts and unwanted halos. Li et
al. [9] perform a similar fusion in the wavelet domain,
by retaining the maximum wavelet coefficient across
the input bands at each pixel. A related approach is
due to Scheunders [32] which fuses together multiscale
edges [33] extracted from each component image.

Although there is no canonical orientation for the
direction of maximum contrast at a pixel in a multi-
parameter image like there is for scalar-valued im-
ages [34], a related set of techniques approximate
a single gradient direction and magnitude at each
pixel based on an analysis of the second fundamental
form [10], [35]. This allows computing a grayscale
image that has a similar gradient field by solving a
Poisson equation.

While these two classes of techniques have the
advantage of explicitly preserving spatial gradients
in the input in the resulting visualization they have
two key drawbacks. First, they produce scalar-valued
intensity output. These results are often colorized in
practice using an ad-hoc process [10]. Second, they
do not explicitly enforce a consistent mapping—two
pixels in the output with similar values may have sig-
nificantly different responses in the underlying input.
Dimensionality reduction methods, on the other hand,
are better able to utilize a multidimensional output
colorspace and produce consistent mappings.
Tone-Mapping and Detail Exaggeration: Our ap-
proach is also related to tone-mapping methods [36],
[37], [38], [39] designed to compress high-dynamic-
range images to a low-dynamic-range display format.
Many multidimensional images contain a wide range
of values (e.g., astronomical datasets that include
bright stars and dim interstellar objects within the

same image). In these cases, we are faced with the
problem of effectively mapping these values to a color
image with a significantly smaller range of allowable
values. Another set of related techniques allow exag-
gerating fine-scale details in a set of images [40], [41].
We show how our basic algorithm can be modified to
allow a similar exaggeration of features in a multidi-
mensional image to more effectively utilize the limited
dynamic range of the output.

3 PROBLEM FORMULATION

In this work, we describe a method for mapping
a high-dimensional image, represented by a large
number of scalar-valued bands, to a low-dimensional
image. In the simplest formulation, the goal of such
a mapping is to generate a low-dimensional image
whose pixel values are consistent with the pixel values
of the high-dimensional input. That is, the mapping
should preserve (to the extent possible) the relative
distances between pairs of pixel values in the input.

In this work, we consider a more general problem
that supports user-guided mapping in two ways.
First, the method should support soft constraints on
the color of the output pixels, allowing a user to spec-
ify that the non-visual data should be rendered with
a domain-specific color palette. Second, the method
should support non-linear transformations of distance
values, allowing the user to highlight detail by damp-
ening target distances in input ranges that are of low
interest and amplifying target distances in important
ranges.

An example of such an application is shown in
Figure 2. In this example, the input consists of the four
bands shown in images (a) and (b) (RGB+UV) and the
goal is to generate a three-band (RGB) image which
best captures the data in the input. Generating a color
image that best preserves the input distances results
in an image capturing the variation in the input data
but failing to preserve the visual information, shown
in (c). Using the input color values as a soft constraint,
our system solves for an image whose pixel varia-
tions are consistent with the input data and whose
color palette is faithful to the original color values,
shown in (d). Finally, by adaptively remapping target
distances, we obtain an image which enhances detail
by compressing target distances for large differences
in input data values and inflating target distances for
small difference values, shown in (e).

Formally, the goal of our work is to define a map-
ping of an image with H bands and N pixels to
a lower dimensional image with L bands of equal
spatial resolution. Denoting by R the N × H input
matrix of data values and by S the N × L output
matrix of color values, we aim to solve for the row
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(a) (b) (c) (d) (e)

Fig. 2. Overview of our visualization method. This example shows a 4D multispectral image of a Coreopsis
flower that consists of (a) three visible RGB bands and (b) one ultraviolet (UV) band. Using SVD to map these
4D pixel values to 3D CIELAB coordinates results in (c) an image that conveys the structure in this dataset,
but uses an arbitrary color palette. (d) Out method allows for the preservation of the input colors by interpreting
the visible bands as soft constraints on the multidimensional mapping process. (e) An important benefit of our
method is that it also allows exaggerating details in these datasets by adaptively scaling pairwise distances in
the input. Images c© Bjørn Rørslett/NN/Nærfoto www.naturfotograf.com.

vectors of S, {s1, . . . , sN} ∈ RL, that minimize:

τ(S) =
∑
i<j

wij(δRij − ‖si − sj‖)2︸ ︷︷ ︸
Distance Consistency

+
∑
i

wi‖si − s̄i‖2︸ ︷︷ ︸
Value Constraints

. (1)

In this equation, the quantity τ(S) is referred to as
the stress of the solution S [42]. Here, the soft con-
straints on the pixel values are incorporated on the
right, with s̄i denoting the prescribed value at pixel
i and wi denoting the weight of the constraint. The
distance constraints are incorporated on the left, with
δRij denoting the target distance between the value of
si and the value of sj and wij denoting the weight of
the associated distance constraint.

3.1 Unconstrained Stress with Euclidean Dis-
tances

In the special case where the pixel values are un-
constrained (wi = 0) and the target distances are
Euclidean and uniformly weighted (wij = 1 and
δRij = ‖ri − rj‖), Equation 1 permits a closed-form
solution computed from the Singular Value Decom-
position (SVD) of the Gram matrix of R, a technique
referred to as classical metric MDS [11]. However,
using this technique in practice requires addressing
the fact that N is often very large.1 A common
approximation strategy is to consider only a subset
of the pairwise distances during the optimization.
Two popular algorithms, Landmark MDS (LMDS) [14]
and Pivot MDS [15], explicitly embed only a small
subset of K points (where K � N ) and then place
the remaining N − K points with respect to these
fixed locations. The method of Rasche et al. [29] for
computing grayscale versions of color images used a
technique based on LMDS to handle large images.

1. As a point of comparison, a 512 × 512 image would require
taking the SVD of a matrix with 262K rows and columns.

3.2 Incorporating Constraints and General Target
Distances

Our approach, outlined in the following section, per-
forms non-linear optimization to minimize stress [43],
[44], [45]. There are two main advantages to this
method. First, it allows exploration of a larger portion
of the solution space in each iteration, requiring fewer
iterations to converge as compared to force-directed
approaches [46]. Second, in contrast to classical scal-
ing techniques, it can accommodate the more general
formulation of stress in Equation 1.

4 OPTIMIZATION STRATEGY

The challenge in solving for the image S that mini-
mizes stress is that the expression in Equation 1 results
in a non-linear optimization (due to the appearance
of ‖si − sj‖ in the distance consistency constraint).
To address this, we minimize the stress through an
iterative process known as majorization [42], obtaining
a sequence of images {Sk}with strictly non-increasing
stress values, τ(Sk−1) ≥ τ(Sk).

Like the Gauss-Newton method, stress majorization
proceeds by locally fitting a quadratic (positive semi-
definite) energy to the stress at the current estimate,
and obtains the next estimate by solving for the
minimum of the quadratic energy. The method termi-
nates when the difference in the stress values of two
successive estimates falls below a given threshold.
The difference between these approaches is that by
choosing a majorizing energy (i.e. the value of the
quadratic energy is never smaller than the actual
stress), the next estimate is guaranteed not to “over-
shoot”, resulting in estimates {Sk} with monotoni-
cally decreasing stress.

While we defer the details of the construction to
Appendix A, we remark that since the majorizing en-
ergy is quadratic, minimizing the energy is equivalent
to solving a symmetric linear system. In practice, the
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Fig. 3. Three (of fifty) basis vectors computed from an
8-band multispectral aerial image of New Orleans [1].
Euclidean distances are encoded as grayscale intensi-
ties so that pixel values similar to the associated cluster
center are dark and dissimilar pixel values are white.
Projecting the data into this basis preserves pairwise
distances.

system that we solve is of the form:

(L + Λ)Sk+1 = LkSk + ΛS̄, (2)

where L is a Laplacian matrix whose entries are de-
fined by the distance weights, Λ is the diagonal matrix
of constraint weights, and Lk is a Laplacian matrix
whose entries adjust for the relationship between the
prescribed target distances and the distances realized
by the previous solution Sk.

4.1 Subspace Restriction
Equation 2 requires solving a dense linear system of
equations with NL unknowns, a prohibitively expen-
sive task even for small images. To overcome this
limitation, we first adopt an idea proposed within
the graph drawing community [12], [13] and restrict
the solution to lie within a carefully chosen subspace.
This decouples the size of the linear system from the
image resolution, making this approach feasible for
large datasets.

Formally, we restrict each N -dimensional band (col-
umn) in the N×L solution matrix Sk to lie within the
subspace spanned by M orthonormal column vectors
{v1, . . . ,vM}. Therefore

Sk = (v1 · · ·vM )

 uk11 . . . uk1L
...

. . .
...

ukM1 . . . ukML

 = VUk, (3)

where V is an N ×M matrix constructed from these
basis vectors and Uk is a M ×L matrix that contains
the coordinates of the solution Sk within this basis.

As we explain in the following section, each basis
vector vi is itself an image derived from the input
(Figure 3). This forces each band in the solution to be
expressed as a linear combination of M such images
and allows rewriting Equation 2 as

(L + Λ)VUk+1 = LkSk + ΛS̄. (4)

We multiply both sides by VT(L + Λ)T to obtain the
normal equations

VT(L + Λ)T(L + Λ)VUk = VT(L + Λ)T(LkSk + ΛS̄),
(5)

a linear system with ML unknowns, in practice M ∼
50.

Although restricting the solution to a low dimen-
sional subspace reduces the size of the linear system
that must be solved in each iteration, two important
issues remain. First, there is the task of defining a
suitable basis V. Second, computing the products in
Equation 5 requires an infeasible N2M operations. We
describe our solutions to both of these problems in the
following sections.

4.2 Basis Construction
We require a low-dimensional basis that still con-
tains a wide range of accurate and informative vi-
sualizations. We follow a procedure similar to that
outlined by Harel et al. [12] for constructing V. We
first separate the input pixel values into M clusters
using a standard k-means algorithm (clustering the
pixels based on their multi-band values and ignoring
spatial proximity). For each cluster center qi ∈ RH , we
construct the column vector vi, with vij = ‖qi − rj‖.
That is, vi is the “image” of the distance of pixels
in R from qi.2 Three basis vectors are shown in
Figure 3 that were computed from a multispectral
image of New Orleans [1]. The first is obtained by
choosing a cluster center representing populated land
regions, the second is obtained by choosing a cluster
center representing water, and the third is obtained
by choosing a cluster center representing less densely
populated areas.

Recall that our formulation requires these basis
vectors to be orthonormal. We use the Gram-Schmidt
process to accomplish this. We also force these basis
vectors to be orthogonal to 1 ∈ RN . This eliminates
the translational ambiguity from the solution space
and guarantees that the coefficient matrix in Equa-
tion 5 is positive definite.3

To understand why a basis constructed in this
manner can express a range of useful visualizations,
consider the vectors shown in Figure 3. Note that each
basis vector encodes a “view” of the data from the
perspective of the associated cluster center. It can be
shown [12] that nearby pixel values remain nearby
and distant pixel values remain distant under projec-
tions into this basis. The amount of error due to this
projection is proportional to the maximum distance
between any one pixel value and its closest cluster
center. Because the k-means algorithm is designed
to minimize this maximum distance, this error is
expected to be small. We present results that confirm
the effectiveness of this basis in Section 5.

2. Note that this approach implicitly assumes that the distances,
δRij , are representative of the distances between the pixels in the
original image R so that the basis defined using Euclidean distances
‖qi−rj‖ should be effective for capturing the variation represented
by the non-Euclidean distances described by δRij .

3. Technically, this assumes the graph Laplacian matrix has no
disconnected components which is true for our construction de-
scribed in Section 4.3.
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4.3 Sparse Approximation of the Laplacian
Although performing the optimization in a reduced
subspace limits the size of the linear system that
must be solved, computing the matrix products in
Equation 5 remains impractical. To address this, we
force the Laplacian matrices L and Lk to be sparse by
selecting a set of “landmark” pixels P where |P | = K
and defining the weights as

wij =

{
wij = 1 if i ∈ P or j ∈ P
wij = 0 otherwise .

These K pixels are also chosen using a k-means clus-
tering algorithm. This sparse assignment of weights
reduces the complexity of computing (L + Λ)V from
O(N2M) to O(NKM) and computing (LkSk + ΛS̄)
to O(NKL). This approach is analogous to existing
landmark versions of classical MDS such as Pivot
MDS [15] that minimize an approximation to stress
by considering a subset of the pairwise distances in
Equation 1. The fact that we carry out this optimiza-
tion in a restricted subspace further improves stability
even for very small K [45] as this acts as a regular-
ization operator since many degenerate embeddings
are simply not expressible in V.

4.4 Implementation
Figure 4 gives pseudocode of our complete algorithm
along with the asymptotic running time of each major
component. Lines 1-3 must be performed only once
per dataset and the results are stored on disk. The
products in lines 4, 5 and 9 are performed on the GPU
using NVIDIA’s CUDA programming framework. In
each case, the result is divided into 16×16 submatrices
to form a thread block and each thread computes a
single entry.

Equation 5 is solved using a standard LU factor-
ization method in LAPACK implemented in Intel’s
Math Kernel Library. Only the relatively small M ×L
coordinate matrix U must be transferred between the
GPU and CPU in each iteration. The other matrices
reside in GPU memory, including the reduced image

Stress Majorization
1 V = ComputeBasis(R,M) O(NM)
2 V = GramSchmidt(V) O(NM2)
3 P = SelectLandmarks(R,K) O(NK)
4 Precompute A = (L + Λ)V O(NKM)
5 Precompute ATA O(NM2)
6 Initialize S O(NL)
7 Repeat until convergence:
8 Lk = LocalLaplacian(S,δR) O(NK)
9 Compute B = AT (LkS + ΛS̄) O(NL(M +K))

10 Solve U = (ATA)−1B O(M3)
11 Compute S = VU O(NLM)
12 Compute stress from Eq. 1 O(NK(L+H))
13 Return S

Fig. 4. Pseudocode for our algorithm.

S, allowing efficient transfer to the framebuffer for
display. We compute the stress in Equation 1 after
each iteration and terminate the algorithm when this
changes by less than 1%, typically within 20 itera-
tions.

5 EVALUATION

To determine the practical efficacy of our approach,
we consider three different evalautions. First, we con-
sider the performance of our method in optimizing
raw stress, where the values of the output image are
not constrained and the target distances are defined
in terms of Euclidean distances between pixel values
in the input. In this scenario, traditional approaches
can be used to solve for the low-dimensional output
image, allowing for a direct comparison to related
work. Next, we consider the qualitative contribu-
tion of incorporating constraints and non-Euclidean
distances into the optimization process. Finally, we
provide a quantitative evaluation of our method by
presenting a simple metric for evaluating visualiza-
tion fidelity which we use to compare results obtained
with several different methods.

5.1 Raw Stress: No Constraints and Euclidean
Distances

We compared our algorithm to Principal Component
Analysis (PCA), Pivot MDS [15] and Glimmer [46].
Although PCA is designed to preserve variance in-
stead of pairwise distances, it is commonly used in
this area and is competitive with these other methods
in terms of minimizing stress. These experiments were
conducted using two eight-band images (H = 8) from
the LANDSAT remote sensing database [1]. These
include the New Zealand dataset shown in Figure 1
and the Tenerife dataset in Figure 6.

Accuracy: In the first set of experiments, we used
64× 64 versions of these images (N = 4096) to allow
computing ground truth solutions with full metric
MDS and generated two-dimensional images (L = 2)
as this was the maximum number the available imple-
mentation of Glimmer could support. Figure 5 plots
the accuracy of each algorithm with respect to full
MDS for an increasing number of landmarks K. We
ran our algorithm using a range of subspace sizes
(M = 5, 10, 50, 100). The plots give the Procrustes
Statistic [11], measuring the minimum Euclidean dis-
tance between the output and the results of full MDS
over all rotations, dilations and translations. A value
of 0.0 indicates an optimal result and 1.0 corresponds
to random noise.

As the plots indicate, PCA and Pivot MDS (for K >
8) are both close to optimal whereas our approach
requires a larger K to achieve comparable accuracy.
Additionally, we see that force-based methods such as
Glimmer are not as accurate.
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Fig. 5. Accuracy of our algorithm compared to SVD,
Pivot MDS and Glimmer.

Pivot MDS Our Method

PCA Glimmer

Fig. 6. Images produced by all four techniques for the
Tenerife dataset (cropped). The output of each method
was rigidly aligned to the PCA result to aid side-by-side
comparison. The visual differences are minor.

To provide a visual interpretation of these errors,
Figure 6 shows the results for the Tenerife dataset
at 512 × 512 spatial resolution, obtained using each
algorithm.4 We normalized each of the visualizations
by applying the rigid body transformation that best
aligns it with the PCA result. Note that despite the
differences in Procrustes distances, Figure 6 indicates
that all four methods produce results that are visually
similar.

Efficiency: We also measured the performance of
these four algorithms as a function of dataset size. The
graphs along the top row in Figure 7 plot running
time measured in seconds as a function of N and
the graphs along the bottom plot the number of
iterations required for convergence for Glimmer and
our method. These graphs show results for images of
sizes up to 512 × 512. We used MATLAB’s built-in
“economy” SVD and we implemented Pivot MDS in
MATLAB using optimized matrix functions wherever
possible. All measurements were made using a Dell
XPS with two Intel Core2 Quad CPUs and 3GB of

4. Based on our findings in Figure 5, we chose values of M = 50
and K = 160 for our technique and K = 16 for Pivot MDS. We
used K = 8 for Glimmer as reported in their paper [46].
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Fig. 7. Speed of our algorithm compared to PCA, Pivot
MDS and Glimmer.

memory and an NVIDIA GeForce GTX 280.
Pivot MDS and PCA are efficient techniques and

outperformed both Glimmer and our algorithm; note
that the size of the respective covariance matrices
are K2 and H2. Note that Glimmer and our method
are comparable in terms of speed. On the one hand,
our approach requires a nearly constant number of
iterations due to the fact that it is computing a fixed
number of ML coordinates irrespective of the input
size, whereas the number of iterations in Glimmer is
roughly linear in the input size (Figure 7, bottom). On
the other, the operations performed in each iteration
of a force-directed method are cheaper and more
parallelizable, leading to comparable running times.

5.2 Incorporating Constraints and non-Euclidean
Distances
The experiments from the previous section indicate
that PCA and Pivot MDS both provide comparably
high accuracy at lower computational cost when min-
imizing raw stress. We now consider the qualitative
advantages of solving the more general formulation
of stress, which is not supported by either of these
methods.

For these experiments, we have focused on 3-
dimensional output color images, interpreting the out-
put S as coordinates in the CIELAB color space. This
helps ensure that distances between input pixel values
are preserved as perceptual distances in the colors
used to visualize them [47]. Additionally, we achieve
a more intuitive range for wi (pixel value constraints)
by multiplying this value by N (the total number of
pixels). This balances the contribution of the distance
and value constraints in Equation 1, so that weights
wij = wi = 1.0 give roughly equal weight to the two
goals of stress minimization.

Color and Intensity Constraints: A number of re-
searchers have discussed the importance of selecting
color and intensity schemes appropriate for scientific
visualizations [6], [48]. Although a complete analysis
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(a) RGB Image (b) UV Image (c) Constraint Image

(d) wi = 0.0 (e) wi = 0.1 (f) wi = 1.0

Fig. 8. Chromatic constraints applied to a 6-D multi-
spectral image of a Potentilla flower. The constraints
were constructed from the visible and UV images.
The bottom images were computed by our algo-
rithm for increasing values of wi and include scatter
plots showing the distribution of a∗,b∗ coordinates in
the constraint image (red) and for each of our re-
sults (green). Images c© Bjørn Rørslett/NN/Nærfoto
www.naturfotograf.com.

of the benefits of different palettes is beyond the
scope of this work, we show that our technique can
accommodate a wide range of useful constraints. In
particular, we consider applications in which con-
straints are specified on either the chromatic bands or
the intensity band. (The seperability of the derivation
in Appendix A allows us to specify weights on the
different bands independently.)

Figure 8 shows an example of applying color con-
straints to a six-band multispectral image of a Poten-
tilla flower. The input consists of a standard visible
(RGB) image and one captured under ultra-violet
(UV) light. These types of datasets help biologists
study the way plants are perceived by different or-
ganisms. We created a set of chromaticity constraints
that combine the green colors of the stems and leaves
in the RGB image with the more vibrant colors of the
petals and stamen in the UV image (Figure 8c). Note
that these constraints are sparse, they were generated
by simply copying regions of these two images into
a common buffer. Images computed by our algorithm
are shown along the bottom for increasing values of
wi (pixels without color constraints have wi = 0). We
initialized our algorithm using the constraint image.
The accompanying graphs plot the a∗, b∗ coordinates
of the constraints (red) and our results (green). For a
value of wi = 0.0, the algorithm’s choice of colors is
unconstrained and it is purely driven by the goal of
minimizing stress. For increasing values of wi = 0.1
and wi = 1.0, the target colors are more faithfully
captured as seen in both the images and the scatter

Fig. 9. Chromatic constraints applied to an 8-D mul-
tispectral aerial image of Tenerife, Spain. Top: Im-
age produced by our algorithm using constraints de-
rived from an existing false-color visualization of land
cover [49]. Bottom: Alternative result produced by our
algorithm that uses color constraints derived from the
visible bands.

plots.
Figure 9 shows another example of chromatic con-

straints applied to a multispectral aerial image of
Tenerife, Spain [1]. This dataset contains eight bands
that sample the visible range (RGB) and near to far
regions of the infrared (IR). The result at the top uses
color constraints derived from a false-color visualiza-
tion of this island’s land cover produced by Keuchel
et al. [49], shown in the inset. Note that our result
maintains the same basic palette of dark reds, yel-
lows, greens and blues. However, unlike the Keuchel
visualization, which was computed by quantizing the
hyperspectral data into a custom color palette, our
result reveals far greater detail and accurately conveys
the relationships between these different regions as
smooth color transitions that are proportional to the
variation in the underlying data.

The image at the bottom of Figure 9 shows the
result of using color constraints derived from the
visible bands, shown in the inset. Specifically, the
a∗, b∗ coordinates in the visible image were translated
to have zero mean and scaled by a factor of 1.5 to
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β = 1.0 β = 0.8

β = 0.4 β = 0.6

Fig. 10. Compressing distances. Images computed
with our algorithm for decreasing values of β (clockwise
from top left). Lower values more aggressively com-
press large distances, giving a flatter and more stylized
appearance. Images c© Bjørn Rørslett/NN/Nærfoto
www.naturfotograf.com.

produce more vibrant, saturated colors. We found that
these settings produced a more stylized visualization
reminiscent of a hand-drawn illustration. This same
approach was used in Figures 1 and 13.

Figure 12 shows an example of intensity constraints.
This dataset consists of four images of the Nebula
NGC 6611, also called the Eagle Nebula, taken by the
Hubble Wide-Field Planetary Camera 2.5 In this case,
it’s important that stars and free space remain bright
and dark, respectively. To accommodate this, we set
intensity constraints equal to the norm of the pixel
values in the input (see supplemental) and apply a
low weight of wi = 0.01; we initialized our algorithm
using an RGB image constructed from the first three
bands.

Exaggerating Details: Important features in a dataset
often occur at different scales. For example, the varia-
tions within the ocean water and terrain, respectively,
in Figure 1 are minor compared to the variations
between these two regions. In order to capture both
large- and small-scale features in a single visualization
we modify the target pairwise distances δRij in a way
inspired by the tone-mapping operator of Fattal et
al. [38]. Specifically, we set the target distances δRij in
Equation 1 to be the modified Euclidean distances

δRij = ‖ri − rj‖
(

α

‖ri − rj‖

)1−β

. (6)

The parameter β determines the degree of compres-
sion (for β < 1.0) and α defines a cutoff value be-
low which distances are slightly amplified and above
which they are compressed. Their effect is illustrated

5. http://archive.eso.org/cms

PCA

Our Method

Fig. 11. Visualizations of a 31-D hyperspectral image
of a mouse intestine. Our algorithm reveals more de-
tails than an image computed using PCA due to the
fact that we use transformed distances (α = 0.1 and
β = 0.6). Multispectral data courtesy of Cambridge
Research & Instrumentation, Inc.

in Figure 10, which shows several renditions of a 4-
D multispectral image of a Coreopsis flower for a
fixed value of α = 0.2 and varying values of β. (The
original RGB+UV images can be seen in Figure 2.)
Lower values of β emphasize the differences between
the petals and stamen and between the foreground
and background. We softly constrained the chromatic
bands to match the RGB image (wi = 0.01) and also
used these bands to initialize our algorithm. We found
that small values of β produce flatter, more stylized
images. Although the choice of α depends on the
dataset and the desired effect, our implementation
uses normalized distances and we found that in prac-
tice, setting α to be in the range [0.1, 0.4] provided
good results.

Figure 11 shows another example of exaggerat-
ing details in a multidimensional image, comparing

Dataset wi α β Size Time
New Zealand (Fig. 1) 0.1 0.15 0.3 1 59
Potentilla (Fig. 8) - 0.2 0.8 0.5 21
Tenerife (Fig. 9, top) 0.1 0.2 0.8 0.5 14
Tenerife(Fig. 9, bottom) 0.1 0.2 0.8 0.5 11
Coreopsis (Fig. 10) 0.01 0.2 - 0.2 2
Intestine (Fig. 11) 0.01 0.1 (0.6) 0.2 34
Nebula (Fig. 12) 0.01 0.4 0.5 0.5 29
Grand Canyon (Fig. 13) 0.1 0.1 0.3 1 40

TABLE 1
Parameter settings for the results reported, along with

the spatial resolution in megapixels (MP), and total
running time of our algorithm in seconds.
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PCA PCA + Tone-Mapping Wavelets Laplacian Our Method
(σ̄R = 0.87) (σ̄R = 0.82) (σ̄R = 1.31) (σ̄R = 0.74) (σ̄R = 0.37)

Fig. 12. Visualizations of a 4-D image of the Eagle Nebula computed using different image fusion techniques.

PCA PCA + Unsharp-Masking Wavelets Laplacian Our Method
(σ̄R = 0.54) (σ̄R = 0.52) (σ̄R = 0.52) (σ̄R = 0.50) (σ̄R = 0.47)

Fig. 13. Visualizations of an 8-D aerial image of the Grand Canyon [1] computed using different image fusion
techniques.

the result of our method to the one obtained us-
ing PCA. This dataset contains 31 bands sampled at
10-nm intervals over the visible portion of the EM
spectrum captured using a Nuance c© Multispectral
Imaging System mounted on an epifluorescence mi-
croscope. Note that the visualization computed with
our method reveals fine-scale details in the tissue not
easily visible in the PCA result.

The parameters used to create all of the results
in this paper, along with the dataset sizes and total
running times, are listed in Table 1. Almost all of
the results in this paper show some amount of detail
exaggeration. (This was particularly necessary for the
remote sensing datasets in Figures 1 and 13 and
the astronomy dataset in Figures 12, which have a
dynamic range of 1000:1.)

5.3 Measuring Visualization Fidelity
As demonstrated in Figure 11, the ability to incorpo-
rate constraints into the optimization can result in vi-
sualizations that are richer than those derived by only
minimizing raw stress. However, a natural question
to consider is whether the obtained visualizations are
“true” to the original input. To answer this question,
we propose a simple measure of visualization fidelity.
Using this metric, we compare our results to those of
several common visualization techniques.

Defining a Fidelity Metric: The design of our fidelity
metric is motivated by the observation that a good
visualization should allow a viewer to infer relation-
ships between pixels in the input by only considering

the values of pixels in the output image. As a simple
measure, we would like to determine how often pixel
similarity in the output visualization corresponds to
pixel similarity in the input data.

To this end, we use a divisive clustering algorithm
to separate an output image (S) into a sufficient
number of clusters so that they all have the same intra-
cluster variance σS. Then, we compute the average
variance σ̄R of the input (R) within each of these
clusters and normalize by the total variance of the
input. Smaller values of σ̄R indicate that uniform
regions in the output visualization cover a region
of the input whose values are also (nearly) uniform,
corresponding to more faithful visualizations, while
larger values correspond to lower fidelity visualiza-
tions.

Comparing to Existing Techniques: We compare the
fidelity of our results to three state-of-the-art methods:

1) PCA: The high-dimensional input is projected
onto the 3-D subspace defined by its directions
of maximum variance and these values are in-
terpreted as CIELAB coordinates. We also show
the result of applying a tone-mapping filter [39]
and an unsharp-masking filter as a post-process.

2) Wavelet-Based Fusion: A single intensity im-
age in the wavelet domain is reconstructed by
recording the maximum coefficient at each pixel
across all of the bands [9]. A bi-orthogonal
wavelet basis was used as this gives the fewest
artifacts and produces results indistinguish-
able from state-of-the-art wavelet fusion meth-
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ods [50]. Since this approach only provides a
single-channel output, we use this output to set
the luminance channel of the CIELAB image and
transfer the a∗ and b∗ coordinates from PCA to
the results, a common practice [10].

3) Laplacian Pyramids: Similar to wavelet-based
fusion, a single intensity image is reconstructed
by recording the maximum response at each
pixel at each scale across the Laplacian Pyra-
mids [8] of the component image. Again, we
transferred the a∗ and b∗ coordinates from PCA
to the results.

Figures 12 and 13 show the output of these tech-
niques for a 4-D image of the Eagle Nebula and an
8-D image of the Grand Canyon [1]. For each visual-
ization, the figures provide the average variance σ̄R

computed using a variance of σS = 5.0 for performing
the clustering of output pixels values. These same
trends were observed for different variance values
σS ∈ [2, 15]. The fact that our method is uniformly
lower supports the claim that it produces accurate
visualizations that emphasize the input’s structure.

Additionally, it is interesting to note that though the
use of tone-mapping and unsharp-masking improves
the fidelity of the PCA visualization, the resulting
visualizations still have large σ̄R values. This suggests
that the non-linear exaggeration of detail should be
incorporated into the optimization process and is less
effective when used as a post-processing step.

6 LIMITATIONS AND FUTURE WORK
One limitation of our algorithm is that its output is in-
fluenced by its starting position. Although it produces
an accurate visualization (low stress) from a random
starting configuration, it is almost always desirable
to guide this process by specifying color and/or in-
tensity constraints and a useful initialization. While
we see this flexibility as an advantage over purely
automatic methods, it does require some amount of
user effort and randomly seeded results must often be
further processed by rotating, translating or inverting
the computed colors. We did not perform this type
of post-processing to the results in this paper to make
our comparisons to fully automatic methods more fair.

Since our algorithm considers unsigned distances,
it does not guarantee that spatial gradients in the
input are preserved in the output. We observed this
behavior for datasets with a very high dynamic range
such as the astronomy examples. However, we found
that applying soft constraints to the intensity channel
was a reliable way to avoid these artifacts.

Improving the speed of our algorithm is another
area of future work. The fact that our technique
converges within a fixed number of iterations sug-
gests a focus on reducing the cost of each iteration.
Developing approximate or incremental strategies for
updating these Laplacian matrices is one possible
direction of study.

7 CONCLUSION

We have presented a new image fusion method based
on Multidimensional Scaling. The key advantages of
our approach over prior work are that it provides a
principled way of accommodating user constraints on
the computed visualization and allows a novel way
of exaggerating details in the input. This was accom-
plished through an algorithm inspired by techniques
developed in the graph drawing community that
conducts the underlying optimization in a reduced
subspace. We reported results for a variety of datasets
drawn from remote sensing, biology and astronomy.

APPENDIX
DERIVATION OF MAJORIZATION UPDATE
RULES

Here we derive the update rules for majorizing the
stress:

τ(S) =
∑
i<j

wij(δRij − ‖si − sj‖)2 +
∑
i

wi‖si − s̄i‖2.

Following the approach of Borg et al. [42], we expand
the stress as the sum of three terms:

τ(S) = η2
δ + η2(S) + 2ρ(S),

where the three summands are defined as:

η2
δ =

∑
i<j

wij(δRij )
2

η2(S) =
∑
i<j

wij‖si − sj‖2 +
∑

1<i≤n

wi‖si − s̄i‖2

ρ(S) = −
∑
i<j

wijδ
R
ij‖si − sj‖.

and {s1, . . . , sn} denote the column vectors of S. In
this expression, the first term, η2

δ , is a constant, and
does not play into the optimization. The second term,
η2(S), is quadratic, positive, semi-definite, in S, and
can therefore be solved directly. It is the third term,
ρ(S), that makes minimizing the stress difficult.

To address this challenge, Borg et al. show that for
any Z, one can construct a linear function ρZ(S) that
bounds ρ from above and agrees with ρ at Z:

ρZ(S) ≥ ρ(S) and ρZ(Z) = ρ(Z).

To construct this function they use the Cauchy-
Schwarz inequality (i.e. the statement that the inner-
product of two vectors is no larger than the product
of their lengths) to get:

ρ(S) = −
∑
i<j

wijδ
R
ij

‖si − sj‖ · ‖zi − zj‖
‖zi − zj‖

≤ −
∑
i<j

wijδ
R
ij

‖zi − zj‖
〈si − sj , zi − zj〉

≡ ρZ(S).
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This expression for ρZ(S) is linear in S, it bounds ρ(S)
from above, and it agrees with ρ(S) at S = Z. Thus,
by replacing the stress τ(S) with its approximation at
Z:

τZ(S) = η2
δ + η2(S) + 2ρZ(S),

one obtains a quadratic, positive, semi-definite energy
that can be minimized by solving a linear system of
equations. Furthermore, since this quadratic energy
bounds the stress from above and since it agrees with
the stress at Z, it follows that if Z̃ is the minimizer of
the quadratic energy, then the stress at Z̃ cannot be
greater than the stress at Z.

Expanding out the approximation for the stress at
Z gives:

τZ(S) = η2
δ + Tr(STLS) + Tr(Ŝ

T
ΛŜ)− 2Tr(STLZZ)

where Ŝ = S − S̄ is the vector of offsets from the
prescribed values, L is a Laplacian matrix whose
entries are defined by the distance weights, Λ is
the diagonal matrix of constraint weights, and LZ

is a Laplacian matrix whose entries adjust for the
relationship between the prescribed target distances
and the distances realized by Z:

Lij =

{
−wij for i 6= j∑
l 6=i wil for i = j

, Λij =

{
wi for i = j

0 for i 6= j
,

LZ
ij =


− wijδ

R
ij

‖zi−zj‖ for i 6= j and ‖zi − zj‖ 6= 0

0 for i 6= j and ‖zi − zj‖ = 0
−
∑
l 6=i Lil for i = j

.

Thus, given an estimate for the minimizer of stress,
Z = Sk, the next estimate, Sk+1 can be obtained
by solving for the image Sk+1 that minimizes τZ(S).
Setting the gradient to zero, Sk+1 is obtained by
solving the symmetric, positive, semi-definite system:

(L + Λ)Sk+1 = LZZ + ΛS̄.
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