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Research over the past 10 years has dem-
onstrated the utility of example-based tech-
niques in solving image-processing problems. 

These have proven useful in areas such as tex-
ture synthesis,1 resolution enhancement,2 image 
denoising,3 and hole filling.4 These problems are 
mathematically ill-posed, in that the desired out-
put contains more information than the input. So, 

any algorithm looking to solve 
them must incorporate assump-
tions about our world to select 
a plausible result from the set of 
algebraic solutions. For example, 
to produce useful output for reso-
lution enhancement, the underly-
ing algorithm must “understand” 
what different objects look like 
over a range of spatial scales.

Approaches that use a collec-
tion of training images to con-
struct either a regularization term 
in an objective function, a con-
straint in a search, or a prior im-
age model in a Bayesian setup, 
often outperform traditional 
tools based on “analytic” im-
age models.5 However, these ap-

proaches require access to a large, diverse set of 
training images and efficient search tools. This 
search often occurs at the patch level, decomposing 
an input image into a set of partially overlapping 
patches and searching a database of training images 
for similar patches. Recent work shows that in order 
to achieve reliable inference, this database should 

grow exponentially as the patch size increases.6 
However, owing to the immense storage and com-
putational costs of processing large repositories of 
high-resolution images, researchers typically evalu-
ate their work using only tens to hundreds of train-
ing images—a small fraction of what’s required.

Fortunately, the growing availability of large dis-
tributed (cloud) computing resources allows access 
to more training data than ever before. Companies 
such as Google, Amazon, Yahoo, Microsoft, and 
IBM maintain large data centers the public can 
access through programs such as Amazon’s Elas-
tic Compute Cloud (http://aws.amazon.com/ec2), 
Windows Azure (www.microsoft.com/azure), and 
the US National Science Foundation’s Cluster Ex-
ploratory program (CluE; www.nsf.gov/clue).

Exploiting this opportunity, we built a database 
of one trillion (1012) natural-image patches and 
a search system that performs nearest-neighbor 
(NN) queries. We evaluated our search algorithm’s 
performance on two popular parallel computing 
architectures. Our database has proven useful for 
studying the fundamental relationships between 
the patch size, amount of training data, and near-
est neighbors’ expected quality. We’ve proposed 
the first analytic expression relating these three 
quantities. This expression lets us predict any one 
of the quantities from the other two to provide a 
baseline measurement of the performance of any 
patch-based image-processing algorithm.

The Database
We constructed our database from one million 
images downloaded from the Internet. Here we 

Many	example-based	image-
processing	algorithms	
operate	on	image	patches	
(texture	synthesis,	resolution	
enhancement,	image	
denoising,	and	so	on).	
However,	inaccessibility	to	
a	large,	varied	collection	of	
image	patches	has	hindered	
widespread	adoption	of	these	
methods.	The	authors	describe	
the	construction	of	a	database	
of	one	trillion	image	patches	
and	demonstrate	its	research	
utility.
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look at the hardware and software architectures 
we used and at the database layout.

Distributed-Computing Architectures
We used two separate clusters, each representing a 
different hardware architecture and programming 
framework. IBM and Google provided the first 
cluster through the CluE program. The Hadoop 
0.20.0 programming framework and the Hadoop 
Distributed File System (HDFS) manage access to 
this cluster, and the code is a combination of Java 
and C.

The Hadoop framework exposes the classic map/
reduce functional approach to distributed comput-
ing and mimics Google’s MapReduce programming 
framework. In such setups, the data to process re-
sides on the local disks of individual machines, 
and the infrastructure copies executable code to 
whatever machine contains the portion of the da-
tabase it intends to process. This differs from more 
traditional grid systems that use a dedicated high-
bandwidth network to copy data from a central 
repository to the compute nodes’ main memory. 
The HDFS has built-in redundancy and fault toler-
ance. Each physical machine contains seven Intel 
Xeon 64-bit processors running at 2.8 GHz with 8 
Gbytes of shared memory. Altogether, this cluster 
consists of 416 compute nodes that can execute 
834 map operations in parallel and 830 reduce op-
erations in parallel.

We also implemented our database on the Ranger 
cluster at the Texas Advanced Computing Center 
(TACC; www.tacc.utexas.edu), part of the Ter-
aGrid infrastructure (www.teragrid.org). Ranger 
has 3,936 compute nodes. Each node is a SunBlade 
x6420 with four AMD Opteron Quad-Core 64-bit 
processors (16 cores total) running at 2.3 GHz 
with 32 Gbytes of shared memory. These nodes 
are connected through an InfiniBand switch with 
1-Gbyte-per-second unidirectional point-to-point 
bandwidth. Altogether, Ranger has 62,976 process-
ing cores, 123 Tbytes of distributed memory, and 
1.7 Pbytes of shared disk storage managed with the 
Lustre parallel file system. MPI manages access to 
these machines, and the code is in C.

Database Layout
We’re interested in image-processing systems that 
construct their output patch-by-patch. Such sys-
tems have three key parameters: the patch size, 
the information (feature vectors) and distance 
function used to identify similar patches, and the 
available training images’ size and diversity.

To study these parameters, we favored a design 
flexible enough to allow modifying any of them at 

search time. So, we store a set of complete images 
rather than precomputing patches and the corre-
sponding feature vectors. If these parameters were 
fixed, precomputing and storing this information 
along with any search acceleration data structures 
would significantly decrease running time.

We organized the image set in a straightforward 
hierarchical layout. We store each image as a JPEG 
file, using its original compression parameters. Each 
set of 1,000 images forms a leaf folder. Each set of 
10 leaf folders resides in a parent folder, each set of 

10 parent folders resides in another folder, and so 
on, up to a root folder containing all the images. 
Unlike a flat layout, this scheme avoids limiting the 
number of files in a directory and allows more ef-
ficient traversal of a subset of the database.

We created our database by downloading the 
images from Flickr (www.flickr.com). To maximize 
bandwidth, we downloaded them in parallel to a 
distributed file system according to our hierarchi-
cal layout. Downloading 1 million images took ap-
proximately five hours on the Hadoop cluster and 
approximately three hours on Ranger. We excluded 
any image larger than 4,096 pixels in either di-
mension but applied no other filters. We also re-
stricted our download to images published under 
the Creative Commons licensing rules (http://cre-
ativecommons.org).

The average image in our database is roughly 
1,000 pixels in each dimension and thus requires 
approximately 1 Mbyte of storage (so, all one mil-
lion images occupy approximately 1 Tbyte). Each 
image contains roughly one million individual 
patches, if you assume a distinct patch at each pixel 
(in other words, the patches fully overlap), provid-
ing approximately 1012 patches. To the best of our 
knowledge, this is roughly four orders of magnitude 
larger than datasets used in previous patch-based 
image-processing systems.2,3,7 (For more informa-
tion on related research, see the sidebar.)

Searching the Database
The central computational task we face is identi-
fying the set of patches in our database that are 
similar to those in a query image. Fortunately, 

Our database has proven useful for studying 
the fundamental relationships between the 
patch size, amount of training data, and 
nearest neighbors’ expected quality.
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such NN searches arise in many fields and have 
undergone extensive study. NN algorithms are 
broadly classified according to whether they return 
an exact or approximate solution. Example-based 
image-processing tasks almost always require a set 
of representative matches rather than an exact 
set. So, we investigated approximation algorithms 
and avoided exact NN algorithms, whose runtime 
costs grow prohibitive as the dimensionality of the 
search space (patch size) increases.

We focus on the k-NN problem, which involves 
computing the k patches in our training data-
base closest to a query patch, as determined by 
the chosen feature vector and similarity function. 
(This differs from the e-nearest neighbor problem, 
which computes the set of patches that are within 
distance e from the query.)

A feature vector describes the information in one 
patch and is often a key design decision in these 
systems. An example of a simple feature vector is 
the concatenation of the patch’s raw intensity or 
RGB pixel values. We compute feature vectors by 
removing low-frequency information from each 
patch. This separation is common in many miss-

ing-data problems because high-frequency infor-
mation is often corrupted or missing. We isolate 
these frequency bands by subtracting an image 
from a version of itself that has been convolved 
with a wide Gaussian filter.2 Two patches are simi-
lar if and only if the L2 distance between their cor-
responding feature vectors is small. The running 
times we report would be the same for any feature 
vector of the same size because our design allows 
modifying the feature vector without additional 
processing.

We evaluated two state-of-the-art algorithms 
for approximate k-NN searches. One algorithm 
uses a kd-tree to partition the space around a set 
of points in conjunction with a priority queue to 
accelerate searches.8 (We use the terms “point,” 
“feature vector,” and “image patch” interchange-
ably because you can consider a patch’s feature 
vector to be a point in Rd.) The other algorithm, 
which we ultimately chose for our system, is based 
on locality-sensitive hashing (LSH).9 For search 
spaces of very large dimension, such as the ones we 
consider, LSH is theoretically superior to methods 
that partition space.9

Recent projects show compelling applications of large im-
age collections. James Hays and Alexei Efros described a 

system that completes missing image regions by search-
ing for similar entries in a database of one million images.1 
Researchers have also provided novel 3D interfaces for brows-
ing image collections2 and have created new images by 
using parts of other images.1–7 Such systems would benefit 
from efficient access to a large database of image patches.

Our empirical study on the relationship between patch 
size and the amount of training data required to achieve 
accurate matches is related to research studying the sta-
tistics of natural image patches. Early research examined 
the second-order statistics using methods such as singular 
value decomposition and independent component analysis. 
Bruno Olshausen and David Field estimated an overcom-
plete basis that produces a sparse representation of image 
patches conjectured to resemble the early stages of human 
vision.8 More recently, Damon Chandler and Field esti-
mated the entropy (information content) of 3 × 3 and 8 × 
8 grayscale image patches.9 Our experiments extend this 
research for larger color image patches, providing the basis 
for an analytic function relating the fundamental relation-
ship between patch size, amount of training data, and the 
expected accuracy of nearest neighbors.
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Locality-Sensitive Hashing
Consider a feature vector x̂ d∈� (for example, in 
the case of 4 × 4 RGB patches, d = 48). LSH com-
putes the hash function:

h x
x a b

w
ˆ

ˆ ˆ( )= ⋅ +
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where â is a vector in Rd constructed by sampling 
a p-stable distribution (for p = 2, the L2 norm, this 
is a normal distribution with zero mean and unit 
standard deviation9), w is a scalar-valued param-
eter determining the size of the interval along â  
that gets hashed to the same integer, and b is a 
uniform random variable in the range [0, w].

LSH indexes a hash table using a key formed by 
combining K values of this function for different 
â and b. We follow the method that Alexandr An-
doni and Piotr Indyk proposed, which computes L 
separate hash tables.9 Given a query point q̂ d∈� , 
LSH computes a hash key for each of the L tables, 
performs a brute-force search of the contents of 
the buckets into which the key falls, and returns 
the k (or fewer) nearest neighbors encountered 
during this search.

Figure 1 illustrates each parameter’s role in the 
LSH algorithm: w, K, and L. The parameter w con-
trols the maximum distance a neighbor can be to 
the query, because they can’t hash to the same in-
teger (see Equation 1).

Increasing K increases the chance that the fi-
nal brute-force search won’t consider distant ir-
relevant points. Geometrically, projecting a point 
onto K lines is akin to approximating the ball of 
radius w centered at the query by the visual hull 
formed by intersecting orthographic views from 
these lines (see Figure 1). This approximation’s ac-
curacy improves with more lines. So, K controls a 
trade-off between the cost of indexing each L hash 
table and the final search’s efficiency (measured 
as the number of neighbors found relative to the 
number of points compared).

Increasing L decreases the chance that the 
search will miss a point within distance w from 
the query simply because that point happens to 
straddle the boundary between two consecutive 
intervals along one of the lines â . Larger values 
of L produce more accurate searches but longer 
running times.We found it useful to terminate 
the brute-force search early to guarantee that 
processing time for one query image didn’t ex-
ceed a limit. This is another mechanism for ap-
proximating the search, because the search will 
return only the k nearest neighbors encountered 
up to the limit. This modification helped achieve 
good load balancing.

Researchers have proposed sophisticated strate-
gies for computing K and L, given a fixed w.9 These 
strategies minimize the probability that the solu-
tion will exclude a nearest neighbor while main-
taining near-optimal time and space efficiency. 
We opted instead for a simple trial-and-error 
strategy, and determined that K = 20 and L = 4 
worked well for the searches we wished to per-
form. However, we had difficulty finding a value 
of w that worked well across different patch sizes, 
feature vectors, and images. Zhou Wang and his 
colleagues also noted this difficulty.10 Following 
their recommendation, we use a different value 
of w for each hash table, such that w1 < w2 < … < 
wL. This approach, combined with early termina-
tion, adapts the search according to the density 
of patches in the area around a given query patch. 
Again, through trial-and-error, we found that a 
schedule of w1 = 1.0, w2 = 5.0, w3 = 10.0, and w4 = 
40.0 worked well.

Performance Analysis
We compared methods for computing neighbors 
that use

 ■ the standard LSH algorithm,
 ■ a version of LSH that uses different values of w 
for each hash table, and

 ■ a popular implementation of the kd-tree-based 
algorithm distributed with the ANN (approxi-
mate nearest neighbor ) library.8

b

w

w1
w2

wL

x̂

â

(a) (b)

Figure	1.	The	locality-sensitive	hashing	(LSH)	algorithm	computes	
the	set	of	points	(black	circles)	near	a	query	(the	red	circle).	(a)	The	
algorithm	projects	each	point	onto	a	set	of	K	lines.	(b)	This	process	
basically	approximates	a	ball	of	radius	w	around	the	query	(the	solid	
line)	by	its	visual	hull	(the	dashed	line).	The	set	of	points	that	project	
to	the	same	segments	as	the	query	are	searched	for	neighbors.	This	
process	repeats	L	times,	using	potentially	different	values	of	w	as	
shown	here.
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Using k = 100, we measured the running time 
and accuracy of computing the neighbors of 1,216 
query patches (randomly sampled from a test 
image) in a 512 × 512 training image (roughly 
300,000 training patches). We recorded our results 
for four test images (see Figure 2) and 100 training 
images, which we randomly selected from our da-
tabase and downsampled to 512 × 512. Although 
this amount of data is less than we typically pro-
cess, the kd-tree algorithm’s memory requirements 
proved infeasible for larger test sets.

We measured accuracy in two ways. Match accu-
racy is the percentage of true nearest neighbors re-
turned. Region difference is the percentage increase 
in the distance between the query and the most dis-
tant neighbor in the set of k matches, as compared 
to an exact search. So, a perfect search would have a 
match accuracy of 100 percent and a region differ-
ence of 0 percent. We found that region difference 
better indicates the results’ visual quality because 
it indicates how dissimilar returned matches are 
to an exact search. Using match accuracy alone to 
evaluate different methods can be misleading be-
cause it tends to underestimate performance.

Algorithms adjust the degree of approximation 
in different ways. Users of the kd-tree algorithm 
can specify an approximation factor e. This termi-
nates the search as soon as the ith neighbor found 
is guaranteed not to exceed the true distance to the 
real ith nearest neighbor by a factor of (1 + e). Using 
e = 0.0 results in an exact search. LSH’s accuracy, 
on the other hand, is inherently approximate for 

any values of L and K. We held these values fixed 
and controlled the degree of approximation by ad-
justing early termination deadlines.

Figure 3 presents our experiments’ results for 6 × 
6 patches (d = 108) and 12 × 12 patches (d = 432). 
Figure 3a plots the match accuracy as a function 
of the total running time (the time required to 
construct the acceleration data structure and tra-
verse it). Figure 3b plots the region difference as a 
function of the running time. We chose values for 
the approximation factor and early termination 
deadline to cover a similar range of running times. 
As we expected, the kd-tree algorithm achieves an 
exact match with the longest running time. The 
two LSH algorithms never achieve perfect accu-
racy, although they come close. Table 1 reports the 
algorithms’ memory use.

What Figure 3 doesn’t show is the breakdown 
of the total running time into construction and 
traversal times. For the 6 × 6 patches, building the 
kd-tree took 11.3 seconds and building the hash 
tables took 1.4 seconds. For the 12 × 12 patches, 
these times were 26.3 and 2.8 seconds, respec-
tively. These experiments confirm that the kd-tree 
algorithm is more appropriate when fine-control 
over accuracy is important and that LSH is more 
appropriate when space constraints exist. They 
also confirm that LSH grows more accurate as the 
degree of approximation and patch sizes increase. 
In addition, our adaptive LSH offers a modest im-
provement over standard LSH for very short run-
ning times. The results we report in the rest of this 
article refer to adaptive LSH.

Distributed Processing
Despite LSH’s efficiency, searching all the patches 
in a million 1-megapixel images would be imprac-
tical on a single machine. However, distributing 
this task across multiple machines (or processes) 
working in parallel is straightforward.

We compared the distributed-processing perfor-
mance of the Hadoop and Ranger clusters. In these 
experiments, a single “job” consisted of computing 
the approximate set of k nearest neighbors for each 
patch in a query image. A job executed in three 
stages. The setup phase located and distributed 
executables and data across the cluster. The map 
phase executed many small programs in parallel to 
locate nearest neighbors in individual database im-
ages. The reduce phase aggregated the matches out-
put from the map phase into a set of results, which 
were written back to the distributed file system.

Most of the computation occurred in the map 
phase, in which a series of tasks ran  in parallel. 
Each map phase consisted of these tasks:

Figure	2.	The	four	images	used	in	our	experiments.	We	
compiled	a	set	of	test	images	that	exhibited	variation	in	
the	amount	of	high-frequency	content	they	contained.	
The	town	image,	for	example,	contains	a	significant	
amount	of	high-frequency	information	while	the	fish	
image	contains	mostly	low-frequency	information.
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1. Load a JPEG image from the distributed file 
system and decompress it into memory using 
the routines in Java’s ImageIO library (Ha-
doop) or the libjpeg library (Ranger).

2. Construct feature vectors for each patch in the 
image, which involves performing a series of 
convolutions using the libfftw3 library.

3. Build L hash tables and initialize them using 
the feature vectors from the previous step.

4. Compute each patch’s nearest neighbors, using 
the hash table. This might terminate early to meet 
deadlines for processing single training images.

5. For Hadoop, send matches to the reduce layer 
for assembly by the underlying infrastructure. 
For Ranger, update a fixed-length results table 
to include matches that are closer than those 
previously recorded.

We implemented operations 2 through 5 in C. 
To provide a fair comparison, we used the Java Na-
tive Interface with the Hadoop implementation to 
execute the same code as the MPI implementation 
in the Ranger cluster. Because the Hadoop cluster 
couldn’t process images larger than 1,024 × 1,024 
in the available heap space, we downsampled each 

image in both clusters to this size before running 
our experiments.

Recall that the reduce phase merges the map 
phase’s results into a single consolidated results 
table. In Hadoop, this requires copying the map 
task outputs to a single reduce task, sorting them 
according to computed patch distances, and reduc-
ing them to a single set of results. To provide a fair 
comparison, we performed the same operations in 
our MPI/C implementation, although the sorting 
step wasn’t necessary.

We compared these two implementations’ per-
formance on databases of 1,000 images and 10,000 
images. The same image served as a query in each 
case. Figures 4, 5, and 6 report the results for the 
setup, map, and reduce phases. Because the map 
phase executes in parallel, each job’s total running 
time depends on the number of processing units 
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Figure	3.	The	performance	of	three	nearest-neighbor	algorithms.	(a)	Match	accuracy	as	a	function	of	running	
time.	(b)	Region	difference	as	a	function	of	running	time.	The	kd-tree	algorithm	achieves	an	exact	match	with	
the	longest	running	time.	The	LSH	algorithms	never	achieve	perfect	accuracy	but	come	close.

Table 1. The Memory Use of Three Nearest-Neighbor Algorithms.

Algorithm

Patch size

6 × 6 12 × 12

kd-tree 305 Mbytes 1.1 Gbytes

Locality-Sensitive Hashing 69 Mbytes 70 Mbytes
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allocated to the job. The total (wall clock) time for 
the entire job is

T T
N T

M
S R

M
+ +

∗
,

where TS is the setup time, TR is the reduce time, 
|TM| is each map task’s average running time, N 
is the number of training images, and M is the 
number of available processing units.

We used one process for each image on both the 
Hadoop cluster and Ranger cluster. On the Ranger 
cluster, we requested 32 processing cores for the 
1,000-image database and 128 processing cores for 
the 10,000-image database. Since Hadoop has no 
way to guarantee an allotment of processing cores, 
the framework is responsible for distributing the 
images across the available nodes. The elapsed wall 
clock times for Ranger to execute one search over 
the two databases were approximately 9 minutes 
and approximately 22 minutes. The corresponding 

times for Hadoop were approximately 14 minutes 
and approximately 43 minutes (however, these 
times are less indicative of performance compared 
to those found in Figures 4, 5, and 6 for the rea-
sons stated above.)

We also measured each map task’s computational 
throughput as the number of distance calculations 
per second. Recall that map tasks terminate after 
a fixed deadline that’s the same in both setups. 
So, larger computational throughput will produce 
higher-quality results because a task will consider 
more patches. Table 2 reports these rates, which in-
dicate that, on average, our MPI/C implementation 
performs roughly twice as many distance calcula-
tions as our Hadoop implementation.

On the basis of these results, we conclude that al-
though both implementations perform comparably 
in the map phase, the setup and reduce phases are 
considerably faster on MPI/C than on Hadoop/Java.

In our algorithm’s final version, we terminated 
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Figure	4.	Performance	during	the	setup	phase	for	the	Hadoop	and	Ranger	clusters,	for	(a)	1,000	and	(b)	
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Figure	5	Performance	during	the	map	phase	for	the	Hadoop	and	Ranger	clusters,	for	(a)	1,000	and	(b)	10,000	
images.	“JPEG”	is	the	time	spent	reading	and	decoding	a	JPEG	image.	Because	our	nearest-neighbor	search	
terminates	after	10	seconds,	this	plot	measures	Hadoop’s	and	Ranger’s	relative	efficiency	in	distributing	this	
computation	over	multiple	processing	units.	In	both	clusters,	this	computation	scales	effectively	with	the	
input	size.
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the search for neighbors in each training image 
after 10 seconds. This deadline resulted in an av-
erage match accuracy of 12 percent and an aver-
age region difference of 15 percent (these numbers 
vary with patch size; see Figure 3). These 10 sec-
onds are in addition to the time spent decoding 
the image and building the hash tables, which 
weren’t limited in any way. Altogether, processing 
a training image took 20 seconds on average. Be-
cause the search time is bounded, this total time 
depends very weakly on the size of the query image 
and of the patch. In all, we successfully processed 
one million training images in under two hours 
using 4,096 processing cores.

Patch Size and Match Accuracy
The reconstruction granularity, or patch size, is 
a fundamental parameter in any example-based 
image-processing system. A patch size that’s too 
small will adversely affect the system’s ability to 
capture long-range structures in the image. When 
the patch size is too large, the number of examples 
needed to find high quality matches is infeasible.

In a series of experiments, we reconstructed a set 
of patches from a query image with patches from a 
set of training images. More precisely, we replaced 
high-frequency information in each query patch 
with corresponding high-frequency information 
in the nearest patch from our database. We iso-
lated images’ high-frequency information using 
the common frequency separation procedure we 
described previously. Figure 7 shows our interpre-
tation of these low-frequency and high-frequency 
image subbands for one of the images.

This reconstruction’s accuracy visually indicates 
how densely the space of natural-image patches 
is sampled in our database. Poor reconstructions 
indicate a large average distance between near-
est neighbors and thus an insufficient sampling. 

Conversely, good reconstructions indicate a small 
distance between nearest neighbors and thus an 
adequate sampling.

It’s worth noting that we aren’t trying to directly 
reconstruct images from other images. Solving that 
problem is trivial using 1 × 1 patches (single pixels) 
and a relatively small image database. Instead, our 
experiments aim to derive an analytic expression 
that allows predicting one of the parameters (the 
patch size, training-data size, or average nearest-
neighbor distance) from the other two.

We used the four query images in Figure 2 and 
patches of sizes 4 × 4, 6 × 6, 8 × 8, and 10 × 10 
that overlapped by a single column or row of pixels 
on all sides. For each patch in a query image, we 

Table 2. The Average Number of Distance Computations.
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Database size

1,000 images 10,000 images

Hadoop 1.64 × 107 1.65 × 107
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Figure	6.	Performance	during	the	reduce	phase	for	the	Hadoop	and	Ranger	clusters,	for	(a)	1,000	and	(b)	10,000	
images.	This	phase	consists	of	a	copy,	a	sort,	and	a	reduce	operation.	The	copy	operation	on	Hadoop	is	
significantly	longer	than	on	Ranger.	This	is	due	to	a	combination	of	lag	in	the	setup	and	map	phases	(the	copy	
operation	must	wait	for	these	to	complete)	and	the	narrower	bandwidth	of	the	interconnect	in	the	Hadoop	cluster.

(a) (b)Figure	7.	Subband	decomposition.	We	constructed	a	query	from	the	
town	image	by	separating	the	(a)	low-frequency	and	(b)	high-frequency	
subbands.	The	sum	of	the	low-frequency	and	high-frequency	images	
reproduces	the	original	image.	We	reconstructed	the	high-frequency	
data	in	a	query	image	using	nearest	neighbors	from	the	database	for	
different	patch	sizes.
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computed its single nearest neighbor from either 
one, ten, one hundred, one thousand, ten thou-
sand, one hundred thousand, or one million train-
ing images randomly chosen from our database. 
We then combined these nearest neighbors into a 
complete image by averaging the values along the 
boundaries where patches overlapped.

We retained low-frequency information from 
the query and reconstructed only high-frequency 
bands. This reconstruction corresponds to the best 
result achievable with a particular training set and 
patch size. In other words, the difference between 

the original query image I and the reconstruction 
�I  is an upper bound on the performance of any 
example-based system that uses raw image patches 
directly. Of course, there’s no guarantee that an 
algorithm can achieve this optimal reconstruction 
when data is missing from the query (as is the case 
with image denoising, superresolution, and color-
ization) because you’ll never know with certainty 
which image patch you’re looking for. However, this 
reconstruction reveals the experimental conditions 
required for optimal reconstruction to be possible.

The graphs in Figure 8 plot the difference be-

No. of training images

PS
N

R
PS

N
R

PS
N

R
PS

N
R

SSIM
SSIM

SSIM
SSIM

103 104 105 106 1071021011000

35 1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

30

25

20

15

10

(a)

PSNR
SSIM

No. of training images
103 104 105 106 1071021011000

35 1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

30

25

20

15

10

PSNR
SSIM

No. of training images
103 104 105 106 1071021011000

35 1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

30

25

20

15

10

PSNR
SSIM

No. of training images
103 104 105 106 1071021011000

35 1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

30

25

20

15

10

PSNR
SSIM

No. of training images
103 104 105 106 1071021011000

35 1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

30

25

20

15

10

(b)

PSNR
SSIM

No. of training images
103 104 105 106 1071021011000

35 1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

30

25

20

15

10

PSNR
SSIM

No. of training images
103 104 105 106 1071021011000

35 1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

30

25

20

15

10

PSNR
SSIM

No. of training images
103 104 105 106 1071021011000

35 1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

30

25

20

15

10

PSNR
SSIM

No. of training images
103 104 105 106 1071021011000

35 1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

30

25

20

15

10

(c)

PSNR
SSIM

No. of training images
103 104 105 106 1071021011000

35 1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

30

25

20

15

10

PSNR
SSIM

No. of training images
103 104 105 106 1071021011000

35 1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

30

25

20

15

10

PSNR
SSIM

No. of training images
103 104 105 106 1071021011000

35 1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

30

25

20

15

10

PSNR
SSIM

No. of training images
103 104 105 106 1071021011000

35 1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

30

25

20

15

10

(d)

PSNR
SSIM

No. of training images
103 104 105 106 1071021011000

35 1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

30

25

20

15

10

PSNR
SSIM

No. of training images
103 104 105 106 1071021011000

35 1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

30

25

20

15

10

PSNR
SSIM

No. of training images
103 104 105 106 1071021011000

35 1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

30

25

20

15

10

PSNR
SSIM

Figure	8.	The	image	quality	of	reconstructed	high-frequency	subbands	for	different	patch	sizes	and	amounts	of	training	data,	
for	the	(a)	flower,	(b)	girl,	(c)	town,	and	(d)	fish	images.	PSNR	and	SSIM	stand	for	peak	signal-to-noise	ratio	and	structural	
similarity	index.	The	graphs	show	that	reconstruction	accuracy	increases	as	the	number	of	training	images	increases,	but	at	a	
decreasing	rate.



	 IEEE	Computer	Graphics	and	Applications	 59

tween I and �I  in the form of the peak signal-to-
noise ratio (PSNR) and the structural similarity 
(SSIM) index.10 These graphs show a clear trend: 
reconstruction accuracy increases as the number 
of training images increases, but at a decreasing 
rate. Also, certain images require more data to 
reconstruct than others for the same patch size 
and amount of training data. We attribute this 
to the fact that some images (such as the town 
image) contain significantly more high-frequency 
information than others consisting of smoother 
low-frequency gradients (for example, the fish im-
age). Figure 9 also confirms the unsurprising fact 
that reconstructing images using larger patches 
requires more training data.

To extrapolate these results to larger training sets 
and patch sizes, we experimented with analytic ex-
pressions that link the expected SSIM, denoted by 
q, to the number of patches in the training set 
n. We had the best success with a simple rational 
function:

q
a n bd d

= −
+

1
1

log
,

where the dependence on d (the dimension of the 
patches) is made explicit in the parameters ad and 
bd. We fit these parameters to the average SSIM 
(computed over the four test images) for each patch 
size using the Nelder-Mead simplex algorithm.

Figure 10 shows the obtained fits, superimposed 
over the measured averages. Figure 11 shows an-
other view of this data. It plots the amount of train-
ing data (measured in image patches) our analytic 
model predicted would be necessary to achieve dif-
ferent quality scores for different patch sizes. We 
expect that researchers will use this model to either 
estimate a lower bound on the amount of train-
ing data needed to achieve a given quality score or 
estimate the largest patch an available amount of 
training data can reliably support.

(a)

(b)

(c)

(d)

10 images 10,000 images 1 million images

Figure	9.	Image	reconstructions	with	difference	visualizations,	for	the	
girl	image	using	(a)	4	×	4	and	(b)	8	×	8	patches	and	for	the	town	image	
using	(c)	4	×	4	and	(d)	8	×	8	patches.	These	images	illustrate	the	error	
introduced	in	reconstructing	the	girl	and	town	images	using	these	
patch	sizes	across	multiple	dataset	sizes.	The	results	indicate	that	larger	
patch	sizes	require	increasingly	more	data	to	produce	high-quality	
reconstructions.
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Figure	10.	The	expected	SSIM	score	as	a	function	of	the	number	of	training	images	for	(a)	4	×	4,	(b)	6	×	6,	(c)	8	×	8,	and	(d)	10	×	10	
patches.	Each	graph	compares	measurements	(averages	over	the	four	test	images)	to	predictions	by	our	analytic	model,	q	=	1	−	
(1/(a	log	n	+	b)).	The	best-fitting	parameters,	which	we	computed	using	the	Nelder-Mead	optimization	algorithm,	appear	below	
each	graph.
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Our database and search system provide a 
blueprint for others interested in building 

similar tools to study other problems in Internet-
scale image processing. We also believe our ana-
lytic expression relating the patch size, amount 
of training data, and average degree of similarity 
between nearest patches will be useful to research-
ers developing similar systems. We’re currently 
extending our research to investigate specific miss-
ing-data problems, including resolution enhance-
ment and denoising. 
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Figure	11.	The	amount	of	training	data	(in	patches)	
necessary	to	achieve	different	quality	thresholds	
for	different	patch	sizes.	The	patch	space’s	
dimensionality	is	equal	to	the	product	of	the	patch	
width,	patch	height,	and	number	of	color	bands.


