
50	 January/February	2011	 Published	by	the	IEEE	Computer	Society	 0272-1716/11/$26.00	©	2011	IEEE

Camera	Culture

Building and Using a
Database of One Trillion Natural-
Image Patches
Sean Arietta and Jason Lawrence ■ University of Virginia

Research over the past 10 years has dem-
onstrated the utility of example-based tech-
niques in solving image-processing problems.

These have proven useful in areas such as tex-
ture synthesis,1 resolution enhancement,2 image
denoising,3 and hole filling.4 These problems are
mathematically ill-posed, in that the desired out-
put contains more information than the input. So,

any algorithm looking to solve
them must incorporate assump-
tions about our world to select
a plausible result from the set of
algebraic solutions. For example,
to produce useful output for reso-
lution enhancement, the underly-
ing algorithm must “understand”
what different objects look like
over a range of spatial scales.

Approaches that use a collec-
tion of training images to con-
struct either a regularization term
in an objective function, a con-
straint in a search, or a prior im-
age model in a Bayesian setup,
often outperform traditional
tools based on “analytic” im-
age models.5 However, these ap-

proaches require access to a large, diverse set of
training images and efficient search tools. This
search often occurs at the patch level, decomposing
an input image into a set of partially overlapping
patches and searching a database of training images
for similar patches. Recent work shows that in order
to achieve reliable inference, this database should

grow exponentially as the patch size increases.6
However, owing to the immense storage and com-
putational costs of processing large repositories of
high-resolution images, researchers typically evalu-
ate their work using only tens to hundreds of train-
ing images—a small fraction of what’s required.

Fortunately, the growing availability of large dis-
tributed (cloud) computing resources allows access
to more training data than ever before. Companies
such as Google, Amazon, Yahoo, Microsoft, and
IBM maintain large data centers the public can
access through programs such as Amazon’s Elas-
tic Compute Cloud (http://aws.amazon.com/ec2),
Windows Azure (www.microsoft.com/azure), and
the US National Science Foundation’s Cluster Ex-
ploratory program (CluE; www.nsf.gov/clue).

Exploiting this opportunity, we built a database
of one trillion (1012) natural-image patches and
a search system that performs nearest-neighbor
(NN) queries. We evaluated our search algorithm’s
performance on two popular parallel computing
architectures. Our database has proven useful for
studying the fundamental relationships between
the patch size, amount of training data, and near-
est neighbors’ expected quality. We’ve proposed
the first analytic expression relating these three
quantities. This expression lets us predict any one
of the quantities from the other two to provide a
baseline measurement of the performance of any
patch-based image-processing algorithm.

The Database
We constructed our database from one million
images downloaded from the Internet. Here we

Many	example-based	image-
processing	algorithms	
operate	on	image	patches	
(texture	synthesis,	resolution	
enhancement,	image	
denoising,	and	so	on).	
However,	inaccessibility	to	
a	large,	varied	collection	of	
image	patches	has	hindered	
widespread	adoption	of	these	
methods.	The	authors	describe	
the	construction	of	a	database	
of	one	trillion	image	patches	
and	demonstrate	its	research	
utility.

	 IEEE	Computer	Graphics	and	Applications	 51

look at the hardware and software architectures
we used and at the database layout.

Distributed-Computing Architectures
We used two separate clusters, each representing a
different hardware architecture and programming
framework. IBM and Google provided the first
cluster through the CluE program. The Hadoop
0.20.0 programming framework and the Hadoop
Distributed File System (HDFS) manage access to
this cluster, and the code is a combination of Java
and C.

The Hadoop framework exposes the classic map/
reduce functional approach to distributed comput-
ing and mimics Google’s MapReduce programming
framework. In such setups, the data to process re-
sides on the local disks of individual machines,
and the infrastructure copies executable code to
whatever machine contains the portion of the da-
tabase it intends to process. This differs from more
traditional grid systems that use a dedicated high-
bandwidth network to copy data from a central
repository to the compute nodes’ main memory.
The HDFS has built-in redundancy and fault toler-
ance. Each physical machine contains seven Intel
Xeon 64-bit processors running at 2.8 GHz with 8
Gbytes of shared memory. Altogether, this cluster
consists of 416 compute nodes that can execute
834 map operations in parallel and 830 reduce op-
erations in parallel.

We also implemented our database on the Ranger
cluster at the Texas Advanced Computing Center
(TACC; www.tacc.utexas.edu), part of the Ter-
aGrid infrastructure (www.teragrid.org). Ranger
has 3,936 compute nodes. Each node is a SunBlade
x6420 with four AMD Opteron Quad-Core 64-bit
processors (16 cores total) running at 2.3 GHz
with 32 Gbytes of shared memory. These nodes
are connected through an InfiniBand switch with
1-Gbyte-per-second unidirectional point-to-point
bandwidth. Altogether, Ranger has 62,976 process-
ing cores, 123 Tbytes of distributed memory, and
1.7 Pbytes of shared disk storage managed with the
Lustre parallel file system. MPI manages access to
these machines, and the code is in C.

Database Layout
We’re interested in image-processing systems that
construct their output patch-by-patch. Such sys-
tems have three key parameters: the patch size,
the information (feature vectors) and distance
function used to identify similar patches, and the
available training images’ size and diversity.

To study these parameters, we favored a design
flexible enough to allow modifying any of them at

search time. So, we store a set of complete images
rather than precomputing patches and the corre-
sponding feature vectors. If these parameters were
fixed, precomputing and storing this information
along with any search acceleration data structures
would significantly decrease running time.

We organized the image set in a straightforward
hierarchical layout. We store each image as a JPEG
file, using its original compression parameters. Each
set of 1,000 images forms a leaf folder. Each set of
10 leaf folders resides in a parent folder, each set of

10 parent folders resides in another folder, and so
on, up to a root folder containing all the images.
Unlike a flat layout, this scheme avoids limiting the
number of files in a directory and allows more ef-
ficient traversal of a subset of the database.

We created our database by downloading the
images from Flickr (www.flickr.com). To maximize
bandwidth, we downloaded them in parallel to a
distributed file system according to our hierarchi-
cal layout. Downloading 1 million images took ap-
proximately five hours on the Hadoop cluster and
approximately three hours on Ranger. We excluded
any image larger than 4,096 pixels in either di-
mension but applied no other filters. We also re-
stricted our download to images published under
the Creative Commons licensing rules (http://cre-
ativecommons.org).

The average image in our database is roughly
1,000 pixels in each dimension and thus requires
approximately 1 Mbyte of storage (so, all one mil-
lion images occupy approximately 1 Tbyte). Each
image contains roughly one million individual
patches, if you assume a distinct patch at each pixel
(in other words, the patches fully overlap), provid-
ing approximately 1012 patches. To the best of our
knowledge, this is roughly four orders of magnitude
larger than datasets used in previous patch-based
image-processing systems.2,3,7 (For more informa-
tion on related research, see the sidebar.)

Searching the Database
The central computational task we face is identi-
fying the set of patches in our database that are
similar to those in a query image. Fortunately,

Our database has proven useful for studying
the fundamental relationships between the
patch size, amount of training data, and
nearest neighbors’ expected quality.

52	 January/February	2011

Camera	Culture

such NN searches arise in many fields and have
undergone extensive study. NN algorithms are
broadly classified according to whether they return
an exact or approximate solution. Example-based
image-processing tasks almost always require a set
of representative matches rather than an exact
set. So, we investigated approximation algorithms
and avoided exact NN algorithms, whose runtime
costs grow prohibitive as the dimensionality of the
search space (patch size) increases.

We focus on the k-NN problem, which involves
computing the k patches in our training data-
base closest to a query patch, as determined by
the chosen feature vector and similarity function.
(This differs from the e-nearest neighbor problem,
which computes the set of patches that are within
distance e from the query.)

A feature vector describes the information in one
patch and is often a key design decision in these
systems. An example of a simple feature vector is
the concatenation of the patch’s raw intensity or
RGB pixel values. We compute feature vectors by
removing low-frequency information from each
patch. This separation is common in many miss-

ing-data problems because high-frequency infor-
mation is often corrupted or missing. We isolate
these frequency bands by subtracting an image
from a version of itself that has been convolved
with a wide Gaussian filter.2 Two patches are simi-
lar if and only if the L2 distance between their cor-
responding feature vectors is small. The running
times we report would be the same for any feature
vector of the same size because our design allows
modifying the feature vector without additional
processing.

We evaluated two state-of-the-art algorithms
for approximate k-NN searches. One algorithm
uses a kd-tree to partition the space around a set
of points in conjunction with a priority queue to
accelerate searches.8 (We use the terms “point,”
“feature vector,” and “image patch” interchange-
ably because you can consider a patch’s feature
vector to be a point in Rd.) The other algorithm,
which we ultimately chose for our system, is based
on locality-sensitive hashing (LSH).9 For search
spaces of very large dimension, such as the ones we
consider, LSH is theoretically superior to methods
that partition space.9

Recent projects show compelling applications of large im-
age collections. James Hays and Alexei Efros described a

system that completes missing image regions by search-
ing for similar entries in a database of one million images.1
Researchers have also provided novel 3D interfaces for brows-
ing image collections2 and have created new images by
using parts of other images.1–7 Such systems would benefit
from efficient access to a large database of image patches.

Our empirical study on the relationship between patch
size and the amount of training data required to achieve
accurate matches is related to research studying the sta-
tistics of natural image patches. Early research examined
the second-order statistics using methods such as singular
value decomposition and independent component analysis.
Bruno Olshausen and David Field estimated an overcom-
plete basis that produces a sparse representation of image
patches conjectured to resemble the early stages of human
vision.8 More recently, Damon Chandler and Field esti-
mated the entropy (information content) of 3 × 3 and 8 ×
8 grayscale image patches.9 Our experiments extend this
research for larger color image patches, providing the basis
for an analytic function relating the fundamental relation-
ship between patch size, amount of training data, and the
expected accuracy of nearest neighbors.

References
 1. J. Hays and A.A. Efros, “Scene Completion Using Millions

of Photographs,” ACM Trans. Graphics, vol. 26, no. 3, 2007,

article 4.

 2. N. Snavely, S.M. Seitz, and R. Szeliski, “Photo Tourism:

Exploring Photo Collections in 3D,” ACM Trans. Graphics,

vol. 25, no. 3, 2006, pp. 835–846.

 3. A.A. Efros and T.K. Leung, “Texture Synthesis by Non-

parametric Sampling,” IEEE Int’l Conf. Computer Vision, IEEE

CS Press, 1999, pp. 1033–1038.

 4. W. Freeman, E. Pasztor, and O. Carmichael, “Learning Low-

Level Vision,” Int’l J. Computer Vision, vol. 40, no. 1, 2000,

pp. 25–47.

 5. A. Buades, B. Coll, and J.M. Morel, “A Review of Image Denois-

ing Algorithms, with a New One,” Multiscale Modeling and

Simulation, vol. 4, no. 2, 2005, pp. 490–530.

 6. M. Elad and D. Datsenko, “Example-Based Regularization

Deployed to Super-resolution Reconstruction of a Single

Image,” Computer J., vol. 50, no. 4, 2007, pp. 1–16.

 7. J. Yang et al., “Image Super-resolution as Sparse Representa-

tion of Raw Image Patches,” Proc. 2008 IEEE Conf. Computer

Vision and Pattern Recognition (CVPR 08), IEEE CS Press, 2008,

pp. 1–8.

 8. B.A. Olshausen and D.J. Field, “Sparse Coding with an Over-

complete Basis Set: A Strategy Employed by V1?” Vision

Research, vol. 37, no. 23, 1997, pp. 3311–3325.

 9. D.M. Chandler and D.J. Field, “Estimates of the Information

Content and Dimensionality of Natural Scenes from Proximity

Distributions,” J. Optical Soc. America A, vol. 24, no. 4, 2007,

pp. 922–941.

Related Work Involving Large Image Collections and Image Patches

	 IEEE	Computer	Graphics	and	Applications	 53

Locality-Sensitive Hashing
Consider a feature vector x̂ d∈� (for example, in
the case of 4 × 4 RGB patches, d = 48). LSH com-
putes the hash function:

h x
x a b

w
ˆ

ˆ ˆ()= ⋅ +










, (1)

where â is a vector in Rd constructed by sampling
a p-stable distribution (for p = 2, the L2 norm, this
is a normal distribution with zero mean and unit
standard deviation9), w is a scalar-valued param-
eter determining the size of the interval along â
that gets hashed to the same integer, and b is a
uniform random variable in the range [0, w].

LSH indexes a hash table using a key formed by
combining K values of this function for different
â and b. We follow the method that Alexandr An-
doni and Piotr Indyk proposed, which computes L
separate hash tables.9 Given a query point q̂ d∈� ,
LSH computes a hash key for each of the L tables,
performs a brute-force search of the contents of
the buckets into which the key falls, and returns
the k (or fewer) nearest neighbors encountered
during this search.

Figure 1 illustrates each parameter’s role in the
LSH algorithm: w, K, and L. The parameter w con-
trols the maximum distance a neighbor can be to
the query, because they can’t hash to the same in-
teger (see Equation 1).

Increasing K increases the chance that the fi-
nal brute-force search won’t consider distant ir-
relevant points. Geometrically, projecting a point
onto K lines is akin to approximating the ball of
radius w centered at the query by the visual hull
formed by intersecting orthographic views from
these lines (see Figure 1). This approximation’s ac-
curacy improves with more lines. So, K controls a
trade-off between the cost of indexing each L hash
table and the final search’s efficiency (measured
as the number of neighbors found relative to the
number of points compared).

Increasing L decreases the chance that the
search will miss a point within distance w from
the query simply because that point happens to
straddle the boundary between two consecutive
intervals along one of the lines â . Larger values
of L produce more accurate searches but longer
running times.We found it useful to terminate
the brute-force search early to guarantee that
processing time for one query image didn’t ex-
ceed a limit. This is another mechanism for ap-
proximating the search, because the search will
return only the k nearest neighbors encountered
up to the limit. This modification helped achieve
good load balancing.

Researchers have proposed sophisticated strate-
gies for computing K and L, given a fixed w.9 These
strategies minimize the probability that the solu-
tion will exclude a nearest neighbor while main-
taining near-optimal time and space efficiency.
We opted instead for a simple trial-and-error
strategy, and determined that K = 20 and L = 4
worked well for the searches we wished to per-
form. However, we had difficulty finding a value
of w that worked well across different patch sizes,
feature vectors, and images. Zhou Wang and his
colleagues also noted this difficulty.10 Following
their recommendation, we use a different value
of w for each hash table, such that w1 < w2 < … <
wL. This approach, combined with early termina-
tion, adapts the search according to the density
of patches in the area around a given query patch.
Again, through trial-and-error, we found that a
schedule of w1 = 1.0, w2 = 5.0, w3 = 10.0, and w4 =
40.0 worked well.

Performance Analysis
We compared methods for computing neighbors
that use

 ■ the standard LSH algorithm,
 ■ a version of LSH that uses different values of w
for each hash table, and

 ■ a popular implementation of the kd-tree-based
algorithm distributed with the ANN (approxi-
mate nearest neighbor) library.8

b

w

w1
w2

wL

x̂

â

(a) (b)

Figure	1.	The	locality-sensitive	hashing	(LSH)	algorithm	computes	
the	set	of	points	(black	circles)	near	a	query	(the	red	circle).	(a)	The	
algorithm	projects	each	point	onto	a	set	of	K	lines.	(b)	This	process	
basically	approximates	a	ball	of	radius	w	around	the	query	(the	solid	
line)	by	its	visual	hull	(the	dashed	line).	The	set	of	points	that	project	
to	the	same	segments	as	the	query	are	searched	for	neighbors.	This	
process	repeats	L	times,	using	potentially	different	values	of	w	as	
shown	here.

54	 January/February	2011

Camera	Culture

Using k = 100, we measured the running time
and accuracy of computing the neighbors of 1,216
query patches (randomly sampled from a test
image) in a 512 × 512 training image (roughly
300,000 training patches). We recorded our results
for four test images (see Figure 2) and 100 training
images, which we randomly selected from our da-
tabase and downsampled to 512 × 512. Although
this amount of data is less than we typically pro-
cess, the kd-tree algorithm’s memory requirements
proved infeasible for larger test sets.

We measured accuracy in two ways. Match accu-
racy is the percentage of true nearest neighbors re-
turned. Region difference is the percentage increase
in the distance between the query and the most dis-
tant neighbor in the set of k matches, as compared
to an exact search. So, a perfect search would have a
match accuracy of 100 percent and a region differ-
ence of 0 percent. We found that region difference
better indicates the results’ visual quality because
it indicates how dissimilar returned matches are
to an exact search. Using match accuracy alone to
evaluate different methods can be misleading be-
cause it tends to underestimate performance.

Algorithms adjust the degree of approximation
in different ways. Users of the kd-tree algorithm
can specify an approximation factor e. This termi-
nates the search as soon as the ith neighbor found
is guaranteed not to exceed the true distance to the
real ith nearest neighbor by a factor of (1 + e). Using
e = 0.0 results in an exact search. LSH’s accuracy,
on the other hand, is inherently approximate for

any values of L and K. We held these values fixed
and controlled the degree of approximation by ad-
justing early termination deadlines.

Figure 3 presents our experiments’ results for 6 ×
6 patches (d = 108) and 12 × 12 patches (d = 432).
Figure 3a plots the match accuracy as a function
of the total running time (the time required to
construct the acceleration data structure and tra-
verse it). Figure 3b plots the region difference as a
function of the running time. We chose values for
the approximation factor and early termination
deadline to cover a similar range of running times.
As we expected, the kd-tree algorithm achieves an
exact match with the longest running time. The
two LSH algorithms never achieve perfect accu-
racy, although they come close. Table 1 reports the
algorithms’ memory use.

What Figure 3 doesn’t show is the breakdown
of the total running time into construction and
traversal times. For the 6 × 6 patches, building the
kd-tree took 11.3 seconds and building the hash
tables took 1.4 seconds. For the 12 × 12 patches,
these times were 26.3 and 2.8 seconds, respec-
tively. These experiments confirm that the kd-tree
algorithm is more appropriate when fine-control
over accuracy is important and that LSH is more
appropriate when space constraints exist. They
also confirm that LSH grows more accurate as the
degree of approximation and patch sizes increase.
In addition, our adaptive LSH offers a modest im-
provement over standard LSH for very short run-
ning times. The results we report in the rest of this
article refer to adaptive LSH.

Distributed Processing
Despite LSH’s efficiency, searching all the patches
in a million 1-megapixel images would be imprac-
tical on a single machine. However, distributing
this task across multiple machines (or processes)
working in parallel is straightforward.

We compared the distributed-processing perfor-
mance of the Hadoop and Ranger clusters. In these
experiments, a single “job” consisted of computing
the approximate set of k nearest neighbors for each
patch in a query image. A job executed in three
stages. The setup phase located and distributed
executables and data across the cluster. The map
phase executed many small programs in parallel to
locate nearest neighbors in individual database im-
ages. The reduce phase aggregated the matches out-
put from the map phase into a set of results, which
were written back to the distributed file system.

Most of the computation occurred in the map
phase, in which a series of tasks ran in parallel.
Each map phase consisted of these tasks:

Figure	2.	The	four	images	used	in	our	experiments.	We	
compiled	a	set	of	test	images	that	exhibited	variation	in	
the	amount	of	high-frequency	content	they	contained.	
The	town	image,	for	example,	contains	a	significant	
amount	of	high-frequency	information	while	the	fish	
image	contains	mostly	low-frequency	information.

	 IEEE	Computer	Graphics	and	Applications	 55

1. Load a JPEG image from the distributed file
system and decompress it into memory using
the routines in Java’s ImageIO library (Ha-
doop) or the libjpeg library (Ranger).

2. Construct feature vectors for each patch in the
image, which involves performing a series of
convolutions using the libfftw3 library.

3. Build L hash tables and initialize them using
the feature vectors from the previous step.

4. Compute each patch’s nearest neighbors, using
the hash table. This might terminate early to meet
deadlines for processing single training images.

5. For Hadoop, send matches to the reduce layer
for assembly by the underlying infrastructure.
For Ranger, update a fixed-length results table
to include matches that are closer than those
previously recorded.

We implemented operations 2 through 5 in C.
To provide a fair comparison, we used the Java Na-
tive Interface with the Hadoop implementation to
execute the same code as the MPI implementation
in the Ranger cluster. Because the Hadoop cluster
couldn’t process images larger than 1,024 × 1,024
in the available heap space, we downsampled each

image in both clusters to this size before running
our experiments.

Recall that the reduce phase merges the map
phase’s results into a single consolidated results
table. In Hadoop, this requires copying the map
task outputs to a single reduce task, sorting them
according to computed patch distances, and reduc-
ing them to a single set of results. To provide a fair
comparison, we performed the same operations in
our MPI/C implementation, although the sorting
step wasn’t necessary.

We compared these two implementations’ per-
formance on databases of 1,000 images and 10,000
images. The same image served as a query in each
case. Figures 4, 5, and 6 report the results for the
setup, map, and reduce phases. Because the map
phase executes in parallel, each job’s total running
time depends on the number of processing units

(a)

(b)

6 × 6 Patches 12 × 12 Patches

6 × 6 Patches 12 × 12 Patches

kd-tree
Standard LSH
Adaptive LSH

M
at

ch
 a

cc
ur

ac
y

(%
)

Time (sec.)

kd-tree
Standard LSH
Adaptive LSH

100

80

60

40

20

0
0

M
at

ch
 a

cc
ur

ac
y

(%
)

100

80

60

40

20

0

Re
gi

on
 d

iff
er

en
ce

 (
%

)

40

35

30

25

20

15

10

5

0

Re
gi

on
 d

iff
er

en
ce

 (
%

)

40

35

30

25

20

15

10

5

0

0 50 100 150 200 250 300 350

Time (sec.)

0 50 100 150 200 250 300 350

Time (sec.)

25 50 75 100 125 150 200175

0

Time (sec.)

25 50 75 100 125 150 200175

kd-tree
Standard LSH
Adaptive LSH

kd-tree
Standard LSH
Adaptive LSH

Figure	3.	The	performance	of	three	nearest-neighbor	algorithms.	(a)	Match	accuracy	as	a	function	of	running	
time.	(b)	Region	difference	as	a	function	of	running	time.	The	kd-tree	algorithm	achieves	an	exact	match	with	
the	longest	running	time.	The	LSH	algorithms	never	achieve	perfect	accuracy	but	come	close.

Table 1. The Memory Use of Three Nearest-Neighbor Algorithms.

Algorithm

Patch size

6 × 6 12 × 12

kd-tree 305 Mbytes 1.1 Gbytes

Locality-Sensitive Hashing 69 Mbytes 70 Mbytes

56	 January/February	2011

Camera	Culture

allocated to the job. The total (wall clock) time for
the entire job is

T T
N T

M
S R

M
+ +

∗
,

where TS is the setup time, TR is the reduce time,
|TM| is each map task’s average running time, N
is the number of training images, and M is the
number of available processing units.

We used one process for each image on both the
Hadoop cluster and Ranger cluster. On the Ranger
cluster, we requested 32 processing cores for the
1,000-image database and 128 processing cores for
the 10,000-image database. Since Hadoop has no
way to guarantee an allotment of processing cores,
the framework is responsible for distributing the
images across the available nodes. The elapsed wall
clock times for Ranger to execute one search over
the two databases were approximately 9 minutes
and approximately 22 minutes. The corresponding

times for Hadoop were approximately 14 minutes
and approximately 43 minutes (however, these
times are less indicative of performance compared
to those found in Figures 4, 5, and 6 for the rea-
sons stated above.)

We also measured each map task’s computational
throughput as the number of distance calculations
per second. Recall that map tasks terminate after
a fixed deadline that’s the same in both setups.
So, larger computational throughput will produce
higher-quality results because a task will consider
more patches. Table 2 reports these rates, which in-
dicate that, on average, our MPI/C implementation
performs roughly twice as many distance calcula-
tions as our Hadoop implementation.

On the basis of these results, we conclude that al-
though both implementations perform comparably
in the map phase, the setup and reduce phases are
considerably faster on MPI/C than on Hadoop/Java.

In our algorithm’s final version, we terminated

(a) (b)

 100

0

 200

 300

 400

 500

 600

Hadoop Ranger RangerHadoop

Ru
nn

in
g

tim
e

(s
ec

.)

 100

0

 200

 300

 400

 500

 600

Ru
nn

in
g

tim
e

(s
ec

.)

Setup Setup

Figure	4.	Performance	during	the	setup	phase	for	the	Hadoop	and	Ranger	clusters,	for	(a)	1,000	and	(b)	
10,000	images.	The	Hadoop	setup	time	scales	linearly	with	the	input	size;	Ranger	setup	times	are	negligible	in	
comparison.	Hadoop	incurs	larger	processing	times	associated	with	locating	and	dispatching	jobs	to	the	input	
on	the	Hadoop	Distributed	File	System.

(a) (b)Hadoop Ranger RangerHadoop
 0

 5

 10

 15

 20

 25

Ru
nn

in
g

tim
e

(s
ec

.)

 0

 5

 10

 15

 20

 25

Ru
nn

in
g

tim
e

(s
ec

.)

Map
JPEG

Map
JPEG

Figure	5	Performance	during	the	map	phase	for	the	Hadoop	and	Ranger	clusters,	for	(a)	1,000	and	(b)	10,000	
images.	“JPEG”	is	the	time	spent	reading	and	decoding	a	JPEG	image.	Because	our	nearest-neighbor	search	
terminates	after	10	seconds,	this	plot	measures	Hadoop’s	and	Ranger’s	relative	efficiency	in	distributing	this	
computation	over	multiple	processing	units.	In	both	clusters,	this	computation	scales	effectively	with	the	
input	size.

	 IEEE	Computer	Graphics	and	Applications	 57

the search for neighbors in each training image
after 10 seconds. This deadline resulted in an av-
erage match accuracy of 12 percent and an aver-
age region difference of 15 percent (these numbers
vary with patch size; see Figure 3). These 10 sec-
onds are in addition to the time spent decoding
the image and building the hash tables, which
weren’t limited in any way. Altogether, processing
a training image took 20 seconds on average. Be-
cause the search time is bounded, this total time
depends very weakly on the size of the query image
and of the patch. In all, we successfully processed
one million training images in under two hours
using 4,096 processing cores.

Patch Size and Match Accuracy
The reconstruction granularity, or patch size, is
a fundamental parameter in any example-based
image-processing system. A patch size that’s too
small will adversely affect the system’s ability to
capture long-range structures in the image. When
the patch size is too large, the number of examples
needed to find high quality matches is infeasible.

In a series of experiments, we reconstructed a set
of patches from a query image with patches from a
set of training images. More precisely, we replaced
high-frequency information in each query patch
with corresponding high-frequency information
in the nearest patch from our database. We iso-
lated images’ high-frequency information using
the common frequency separation procedure we
described previously. Figure 7 shows our interpre-
tation of these low-frequency and high-frequency
image subbands for one of the images.

This reconstruction’s accuracy visually indicates
how densely the space of natural-image patches
is sampled in our database. Poor reconstructions
indicate a large average distance between near-
est neighbors and thus an insufficient sampling.

Conversely, good reconstructions indicate a small
distance between nearest neighbors and thus an
adequate sampling.

It’s worth noting that we aren’t trying to directly
reconstruct images from other images. Solving that
problem is trivial using 1 × 1 patches (single pixels)
and a relatively small image database. Instead, our
experiments aim to derive an analytic expression
that allows predicting one of the parameters (the
patch size, training-data size, or average nearest-
neighbor distance) from the other two.

We used the four query images in Figure 2 and
patches of sizes 4 × 4, 6 × 6, 8 × 8, and 10 × 10
that overlapped by a single column or row of pixels
on all sides. For each patch in a query image, we

Table 2. The Average Number of Distance Computations.

Framework

Database size

1,000 images 10,000 images

Hadoop 1.64 × 107 1.65 × 107

Message-passing interface 2.13 × 107 2.22 × 107

(a) (b)Hadoop Ranger

Ru
nn

in
g

tim
e

(s
ec

.)

 100

 50

 0

 150

 200

 250

Reduce
Sort

Copy

Hadoop Ranger

Ru
nn

in
g

tim
e

(s
ec

.)

 100

 50

0

 150

 200

 250

Reduce
Sort

Copy

Figure	6.	Performance	during	the	reduce	phase	for	the	Hadoop	and	Ranger	clusters,	for	(a)	1,000	and	(b)	10,000	
images.	This	phase	consists	of	a	copy,	a	sort,	and	a	reduce	operation.	The	copy	operation	on	Hadoop	is	
significantly	longer	than	on	Ranger.	This	is	due	to	a	combination	of	lag	in	the	setup	and	map	phases	(the	copy	
operation	must	wait	for	these	to	complete)	and	the	narrower	bandwidth	of	the	interconnect	in	the	Hadoop	cluster.

(a) (b)Figure	7.	Subband	decomposition.	We	constructed	a	query	from	the	
town	image	by	separating	the	(a)	low-frequency	and	(b)	high-frequency	
subbands.	The	sum	of	the	low-frequency	and	high-frequency	images	
reproduces	the	original	image.	We	reconstructed	the	high-frequency	
data	in	a	query	image	using	nearest	neighbors	from	the	database	for	
different	patch	sizes.

58	 January/February	2011

Camera	Culture

computed its single nearest neighbor from either
one, ten, one hundred, one thousand, ten thou-
sand, one hundred thousand, or one million train-
ing images randomly chosen from our database.
We then combined these nearest neighbors into a
complete image by averaging the values along the
boundaries where patches overlapped.

We retained low-frequency information from
the query and reconstructed only high-frequency
bands. This reconstruction corresponds to the best
result achievable with a particular training set and
patch size. In other words, the difference between

the original query image I and the reconstruction
�I is an upper bound on the performance of any
example-based system that uses raw image patches
directly. Of course, there’s no guarantee that an
algorithm can achieve this optimal reconstruction
when data is missing from the query (as is the case
with image denoising, superresolution, and color-
ization) because you’ll never know with certainty
which image patch you’re looking for. However, this
reconstruction reveals the experimental conditions
required for optimal reconstruction to be possible.

The graphs in Figure 8 plot the difference be-

No. of training images

PS
N

R
PS

N
R

PS
N

R
PS

N
R

SSIM
SSIM

SSIM
SSIM

103 104 105 106 1071021011000

35 1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

30

25

20

15

10

(a)

PSNR
SSIM

No. of training images
103 104 105 106 1071021011000

35 1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

30

25

20

15

10

PSNR
SSIM

No. of training images
103 104 105 106 1071021011000

35 1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

30

25

20

15

10

PSNR
SSIM

No. of training images
103 104 105 106 1071021011000

35 1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

30

25

20

15

10

PSNR
SSIM

No. of training images
103 104 105 106 1071021011000

35 1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

30

25

20

15

10

(b)

PSNR
SSIM

No. of training images
103 104 105 106 1071021011000

35 1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

30

25

20

15

10

PSNR
SSIM

No. of training images
103 104 105 106 1071021011000

35 1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

30

25

20

15

10

PSNR
SSIM

No. of training images
103 104 105 106 1071021011000

35 1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

30

25

20

15

10

PSNR
SSIM

No. of training images
103 104 105 106 1071021011000

35 1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

30

25

20

15

10

(c)

PSNR
SSIM

No. of training images
103 104 105 106 1071021011000

35 1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

30

25

20

15

10

PSNR
SSIM

No. of training images
103 104 105 106 1071021011000

35 1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

30

25

20

15

10

PSNR
SSIM

No. of training images
103 104 105 106 1071021011000

35 1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

30

25

20

15

10

PSNR
SSIM

No. of training images
103 104 105 106 1071021011000

35 1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

30

25

20

15

10

(d)

PSNR
SSIM

No. of training images
103 104 105 106 1071021011000

35 1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

30

25

20

15

10

PSNR
SSIM

No. of training images
103 104 105 106 1071021011000

35 1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

30

25

20

15

10

PSNR
SSIM

No. of training images
103 104 105 106 1071021011000

35 1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

30

25

20

15

10

PSNR
SSIM

Figure	8.	The	image	quality	of	reconstructed	high-frequency	subbands	for	different	patch	sizes	and	amounts	of	training	data,	
for	the	(a)	flower,	(b)	girl,	(c)	town,	and	(d)	fish	images.	PSNR	and	SSIM	stand	for	peak	signal-to-noise	ratio	and	structural	
similarity	index.	The	graphs	show	that	reconstruction	accuracy	increases	as	the	number	of	training	images	increases,	but	at	a	
decreasing	rate.

	 IEEE	Computer	Graphics	and	Applications	 59

tween I and �I in the form of the peak signal-to-
noise ratio (PSNR) and the structural similarity
(SSIM) index.10 These graphs show a clear trend:
reconstruction accuracy increases as the number
of training images increases, but at a decreasing
rate. Also, certain images require more data to
reconstruct than others for the same patch size
and amount of training data. We attribute this
to the fact that some images (such as the town
image) contain significantly more high-frequency
information than others consisting of smoother
low-frequency gradients (for example, the fish im-
age). Figure 9 also confirms the unsurprising fact
that reconstructing images using larger patches
requires more training data.

To extrapolate these results to larger training sets
and patch sizes, we experimented with analytic ex-
pressions that link the expected SSIM, denoted by
q, to the number of patches in the training set
n. We had the best success with a simple rational
function:

q
a n bd d

= −
+

1
1

log
,

where the dependence on d (the dimension of the
patches) is made explicit in the parameters ad and
bd. We fit these parameters to the average SSIM
(computed over the four test images) for each patch
size using the Nelder-Mead simplex algorithm.

Figure 10 shows the obtained fits, superimposed
over the measured averages. Figure 11 shows an-
other view of this data. It plots the amount of train-
ing data (measured in image patches) our analytic
model predicted would be necessary to achieve dif-
ferent quality scores for different patch sizes. We
expect that researchers will use this model to either
estimate a lower bound on the amount of train-
ing data needed to achieve a given quality score or
estimate the largest patch an available amount of
training data can reliably support.

(a)

(b)

(c)

(d)

10 images 10,000 images 1 million images

Figure	9.	Image	reconstructions	with	difference	visualizations,	for	the	
girl	image	using	(a)	4	×	4	and	(b)	8	×	8	patches	and	for	the	town	image	
using	(c)	4	×	4	and	(d)	8	×	8	patches.	These	images	illustrate	the	error	
introduced	in	reconstructing	the	girl	and	town	images	using	these	
patch	sizes	across	multiple	dataset	sizes.	The	results	indicate	that	larger	
patch	sizes	require	increasingly	more	data	to	produce	high-quality	
reconstructions.

No. of training images

(a = 4.764, b = –49.205) (a = 1.469, b = –11.655) (a = 0.788, b = –5.609) (a = 0.508, b = –2.884)

103 104 105 106 1071021011000

1.00

0.95

0.90

0.85

0.80

0.75

0.70

(a) (b) (c) (d)

Measured
Fit

No. of training images
103 104 105 106 1071021011000

Measured
Fit

No. of training images
103 104 105 106 1071021011000

Measured
Fit

No. of training images
103 104 105 106 1071021011000

Measured
Fit

SS
IM

1.00

0.95

0.90

0.85

0.80

0.75

0.70

SS
IM

1.00

0.95

0.90

0.85

0.80

0.75

0.70

SS
IM

1.00

0.95

0.90

0.85

0.80

0.75

0.70

SS
IM

Figure	10.	The	expected	SSIM	score	as	a	function	of	the	number	of	training	images	for	(a)	4	×	4,	(b)	6	×	6,	(c)	8	×	8,	and	(d)	10	×	10	
patches.	Each	graph	compares	measurements	(averages	over	the	four	test	images)	to	predictions	by	our	analytic	model,	q	=	1	−	
(1/(a	log	n	+	b)).	The	best-fitting	parameters,	which	we	computed	using	the	Nelder-Mead	optimization	algorithm,	appear	below	
each	graph.

60	 January/February	2011

Camera	Culture

Our database and search system provide a
blueprint for others interested in building

similar tools to study other problems in Internet-
scale image processing. We also believe our ana-
lytic expression relating the patch size, amount
of training data, and average degree of similarity
between nearest patches will be useful to research-
ers developing similar systems. We’re currently
extending our research to investigate specific miss-
ing-data problems, including resolution enhance-
ment and denoising.

References
 1. A.A. Efros and T.K. Leung, “Texture Synthesis by

Non-parametric Sampling,” IEEE Int’l Conf. Computer
Vision, IEEE CS Press, 1999, pp. 1033–1038.

 2. W. Freeman, E. Pasztor, and O. Carmichael, “Learn-
ing Low-Level Vision,” Int’l J. Computer Vision, vol.
40, no. 1, 2000, pp. 25–47.

 3. A. Buades, B. Coll, and J.M. Morel, “A Review of
Image Denoising Algorithms, with a New One,”
Multiscale Modeling and Simulation, vol. 4, no. 2,
2005, pp. 490–530.

 4. J. Hays and A.A. Efros, “Scene Completion Using
Millions of Photographs,” ACM Trans. Graphics, vol.
26, no. 3, 2007, article 4.

 5. M. Elad and D. Datsenko, “Example-Based Regular-
ization Deployed to Super-resolution Reconstruction
of a Single Image,” Computer J., vol. 50, no. 4, 2007,
pp. 1–16.

 6. D.M. Chandler and D.J. Field, “Estimates of the
Information Content and Dimensionality of
Natural Scenes from Proximity Distributions,” J.
Optical Soc. America A, vol. 24, no. 4, 2007, pp.
922–941.

 7. J. Yang et al., “Image Super-resolution as Sparse
Representation of Raw Image Patches,” Proc. 2008
IEEE Conf. Computer Vision and Pattern Recognition
(CVPR 08), IEEE CS Press, 2008, pp. 1–8.

 8. D.M. Mount and S. Arya. “ANN: A Library for
Approximate Nearest Neighbor Searching,” 2006;
www.cs.umd.edu/~mount/ANN.

 9. A. Andoni and P. Indyk, “Near-Optimal Hashing
Algorithms for Approximate Nearest Neighbor in
High Dimensions,” Comm. ACM, vol. 51, no. 1,
2008, pp. 117–122.

 10. Z. Wang et al., “Image Quality Assessment: From
Error Visibility to Structural Similarity,” IEEE Trans.
Image Processing, vol. 13, no. 4, 2004, pp. 600–612.

Sean M. Arietta is a computer science PhD candidate at the
University of Virginia. His research interests include image
enhancement and restoration, texture synthesis, large-scale
image processing, and content-based image retrieval. Arietta
has a BS in physics from the University of Virginia. Contact
him at sma2t@cs.virginia.edu.

Jason Lawrence is an assistant professor of computer sci-
ence at the University of Virginia. His research interests
include acquisition of geometry and material properties, rep-
resentations of realistic material appearance, and interactive
and global-illumination rendering algorithms. Lawrence has
a PhD in computer science from Princeton University. Con-
tact him at jdl@cs.virginia.edu.

Selected CS articles and columns are also available

for free at http://ComputingNow.computer.org.

D
im

en
si

on
al

ity
 o

f p
at

ch
 s

p
ac

e

No. of training patches
1 1010 1020 1030 1040 1050

512

256

128

64

32

16

q = 0.80
q = 0.83
q = 0.86
q = 0.89
q = 0.92
q = 0.85
q = 0.98

Figure	11.	The	amount	of	training	data	(in	patches)	
necessary	to	achieve	different	quality	thresholds	
for	different	patch	sizes.	The	patch	space’s	
dimensionality	is	equal	to	the	product	of	the	patch	
width,	patch	height,	and	number	of	color	bands.

